
The illumos

ZFS Administration Guide

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is
described in this document. In particular, and without limitation, these intellectual property rights may include one
or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX
is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. Legato NetWorker is a trademark or registered trademark of Legato Systems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users
and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of
visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and
may be subject to the export or import laws in other countries. Nuclear, missile, chemical or biological weapons
or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or reexport to
countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to,
the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTA-
TIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT
THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2008 Sun Microsystems, Inc.

Contents

Contents i

List of Tables vi

1 ZFS File System (Introduction) 1
1.1 What’s New in ZFS? . 1

Using Cache Devices in Your ZFS Storage Pool . 3
Enhancements to the zfs send Command . 3
ZFS Quotas and Reservations for File System Data Only 4
ZFS File System Properties for the Solaris CIFS Service 4
ZFS Storage Pool Properties . 5
ZFS and File System Mirror Mounts . 6
ZFS Command History Enhancements (zpool history) 6
Upgrading ZFS File Systems (zfs upgrade) . 7
ZFS Delegated Administration . 8
Setting Up Separate ZFS Logging Devices . 8
Creating Intermediate ZFS Datasets . 9
ZFS Hotplugging Enhancements . 10
Recursively Renaming ZFS Snapshots (zfs rename -r) 10
GZIP Compression is Available for ZFS . 11
Storing Multiple Copies of ZFS User Data . 11
Improved zpool status Output . 12
ZFS and Solaris iSCSI Improvements . 12
Sharing ZFS File System Enhancements . 12
ZFS Command History (zpool history) . 13
ZFS Property Improvements . 14

ZFS xattr Property . 14
ZFS canmount Property . 14
ZFS User Properties . 14
Setting Properties When Creating ZFS File Systems 14

Displaying All ZFS File System Information . 15
New zfs receive -F Option . 15
Recursive ZFS Snapshots . 15
Double Parity RAID-Z (raidz2) . 15
Hot Spares for ZFS Storage Pool Devices . 15
Replacing a ZFS File System With a ZFS Clone (zfs promote) 16
Upgrading ZFS Storage Pools (zpool upgrade) . 16
Using ZFS to Clone Non-Global Zones and Other Enhancements 16

i

CONTENTS

ZFS Backup and Restore Commands are Renamed . 17
Recovering Destroyed Storage Pools . 17
ZFS is Integrated With Fault Manager . 17
New zpool clear Command . 17
Compact NFSv4 ACL Format . 17
File System Monitoring Tool (fsstat) . 18
ZFS Web-Based Management . 18

1.2 What Is ZFS? . 19
ZFS Pooled Storage . 19
Transactional Semantics . 19
Checksums and Self-Healing Data . 20
Unparalleled Scalability . 20
ZFS Snapshots . 20
Simplified Administration . 20

1.3 ZFS Terminology . 21
1.4 ZFS Component Naming Requirements . 22

2 Getting Started With ZFS 23
2.1 ZFS Hardware and Software Requirements and Recommendations 23
2.2 Creating a Basic ZFS File System . 23
2.3 Creating a ZFS Storage Pool . 24
2.4 Creating a ZFS File System Hierarchy . 26

3 ZFS and Traditional File System Differences 29
3.1 ZFS File System Granularity . 29
3.2 ZFS Space Accounting . 30

Out of Space Behavior . 30
3.3 Mounting ZFS File Systems . 30
3.4 Traditional Volume Management . 31
3.5 The NFSv4 ACL Model . 31

4 Managing ZFS Storage Pools 33
4.1 Components of a ZFS Storage Pool . 33

Using Disks in a ZFS Storage Pool . 33
Using Files in a ZFS Storage Pool . 35
Identifying Virtual Devices in a Storage Pool . 35

4.2 Replication Features of a ZFS Storage Pool . 35
Mirrored Storage Pool Configuration . 36
RAID-Z Storage Pool Configuration . 36
Self-Healing Data in a Redundant Configuration . 37
Dynamic Striping in a Storage Pool . 37

4.3 Creating and Destroying ZFS Storage Pools . 37
Creating a ZFS Storage Pool . 37

Creating a Basic Storage Pool . 38
Creating a Mirrored Storage Pool . 38
Creating RAID-Z Storage Pools . 38
Creating a ZFS Storage Pool with Log Devices 39
Creating a ZFS Storage Pool with Cache Devices 40

Handling ZFS Storage Pool Creation Errors . 41

ii

Contents

Detecting in Use Devices . 41
Mismatched Replication Levels . 42
Doing a Dry Run of Storage Pool Creation . 42
Default Mount Point for Storage Pools . 43

Destroying ZFS Storage Pools . 43
Destroying a Pool With Faulted Devices . 43

4.4 Managing Devices in ZFS Storage Pools . 44
Adding Devices to a Storage Pool . 44
Attaching and Detaching Devices in a Storage Pool . 47
Onlining and Offlining Devices in a Storage Pool . 48

Taking a Device Offline . 49
Bringing a Device Online . 49

Clearing Storage Pool Devices . 50
Replacing Devices in a Storage Pool . 50
Designating Hot Spares in Your Storage Pool . 51

Activating and Deactivating Hot Spares in Your Storage Pool 52
4.5 Managing ZFS Storage Pool Properties . 54
4.6 Querying ZFS Storage Pool Status . 56

Displaying Basic ZFS Storage Pool Information . 56
Listing Information About All Storage Pools 56
Listing Specific Storage Pool Statistics . 57
Scripting ZFS Storage Pool Output . 58

Viewing ZFS Storage Pool I/O Statistics . 58
Listing Pool-Wide Statistics . 58
Listing Virtual Device Statistics . 59

Determining the Health Status of ZFS Storage Pools 60
Basic Storage Pool Health Status . 60
Detailed Health Status . 61

4.7 Migrating ZFS Storage Pools . 62
Preparing for ZFS Storage Pool Migration . 62
Exporting a ZFS Storage Pool . 63
Determining Available Storage Pools to Import . 63
Finding ZFS Storage Pools From Alternate Directories 65
Importing ZFS Storage Pools . 65
Recovering Destroyed ZFS Storage Pools . 66
Upgrading ZFS Storage Pools . 67

5 Managing ZFS File Systems 71
5.1 Creating and Destroying ZFS File Systems . 72

Creating a ZFS File System . 72
Destroying a ZFS File System . 72
Renaming a ZFS File System . 73

5.2 Introducing ZFS Properties . 74
ZFS Read-Only Native Properties . 81

The used Property . 82
Settable ZFS Native Properties . 82

The canmount Property . 83
The casesensitivity Property . 84
The recordsize Property . 84

iii

CONTENTS

The sharesmb Property . 84
The volsize Property . 85

ZFS User Properties . 85
5.3 Querying ZFS File System Information . 86

Listing Basic ZFS Information . 86
Creating Complex ZFS Queries . 87

5.4 Managing ZFS Properties . 88
Setting ZFS Properties . 88
Inheriting ZFS Properties . 89
Querying ZFS Properties . 90

Querying ZFS Properties for Scripting . 92
5.5 Mounting and Sharing ZFS File Systems . 92

Managing ZFS Mount Points . 92
Automatic Mount Points . 93
Legacy Mount Points . 94

Mounting ZFS File Systems . 94
Using Temporary Mount Properties . 95
Unmounting ZFS File Systems . 96
Sharing and Unsharing ZFS File Systems . 96

Controlling Share Semantics . 96
Unsharing ZFS File Systems . 97
Sharing ZFS File Systems . 97
Legacy Share Behavior . 97

Sharing ZFS Files in a Solaris CIFS Environment . 97
5.6 ZFS Quotas and Reservations . 99

Setting Quotas on ZFS File Systems . 100
Setting Reservations on ZFS File Systems . 101

6 Working With ZFS Snapshots and Clones 103
6.1 Overview of ZFS Snapshots . 103

Creating and Destroying ZFS Snapshots . 104
Renaming ZFS Snapshots . 105

Displaying and Accessing ZFS Snapshots . 105
Snapshot Space Accounting . 106

Rolling Back to a ZFS Snapshot . 106
6.2 Overview of ZFS Clones . 107

Creating a ZFS Clone . 107
Destroying a ZFS Clone . 108
Replacing a ZFS File System With a ZFS Clone . 108

6.3 Saving and Restoring ZFS Data . 109
Saving ZFS Data With Other Backup Products . 110
Saving a ZFS Snapshot . 110
Restoring a ZFS Snapshot . 110
Sending and Receiving Complex ZFS Snapshot Streams 111

Remote Replication of ZFS Data . 114

7 Using ACLs to Protect ZFS Files 115
7.1 The NFSv4 ACL Model . 115

Syntax Descriptions for Setting ACLs . 116

iv

Contents

ACL Inheritance . 119
ACL Property Modes . 120

7.2 Setting ACLs on ZFS Files . 120
7.3 Setting and Displaying ACLs on ZFS Files in Verbose Format 123

Setting ACL Inheritance on ZFS Files in Verbose Format 127
7.4 Setting and Displaying ACLs on ZFS Files in Compact Format 133

8 ZFS Delegated Administration 137
8.1 Overview of ZFS Delegated Administration . 137

Disabling ZFS Delegated Permissions . 138
8.2 Delegating ZFS Permissions . 138

Syntax Descriptions for Delegating Permissions . 140
Removing ZFS Delegated Permissions (zfs unallow) 141

8.3 Using ZFS Delegated Administration . 141
Displaying ZFS Delegated Permissions (Examples) . 141
Delegating ZFS Permissions (Examples) . 143
Removing ZFS Permission (Examples) . 146

9 ZFS Advanced Topics 149
9.1 ZFS Volumes . 149

Using a ZFS Volume as a Swap or Dump Device . 150
Using a ZFS Volume as a Solaris iSCSI Target . 150

9.2 Using ZFS With Zones . 151
Adding ZFS File Systems to a Non-Global Zone . 152
Delegating Datasets to a Non-Global Zone . 152
Adding ZFS Volumes to a Non-Global Zone . 153
Using ZFS Storage Pools Within a Zone . 153
Managing ZFS Properties Within a Zone . 153
Understanding the zoned Property . 154

9.3 Using ZFS Alternate Root Pools . 155
Creating ZFS Alternate Root Pools . 155
Importing Alternate Root Pools . 155

9.4 ZFS Rights Profiles . 156

10 ZFS Troubleshooting and Data Recovery 157
10.1 ZFS Failure Modes . 157

Missing Devices in a ZFS Storage Pool . 158
Damaged Devices in a ZFS Storage Pool . 158
Corrupted ZFS Data . 158

10.2 Checking ZFS Data Integrity . 158
Data Repair . 159
Data Validation . 159
Controlling ZFS Data Scrubbing . 159

Explicit ZFS Data Scrubbing . 159
ZFS Data Scrubbing and Resilvering . 160

10.3 Identifying Problems in ZFS . 160
Determining if Problems Exist in a ZFS Storage Pool 161
Reviewing zpool status Output . 162

Overall Pool Status Information . 162

v

Configuration Information . 163
Scrubbing Status . 163
Data Corruption Errors . 164

System Reporting of ZFS Error Messages . 164
10.4 Repairing a Damaged ZFS Configuration . 165
10.5 Repairing a Missing Device . 165

Physically Reattaching the Device . 166
Notifying ZFS of Device Availability . 166

10.6 Repairing a Damaged Device . 166
Determining the Type of Device Failure . 166
Clearing Transient Errors . 167
Replacing a Device in a ZFS Storage Pool . 168

Determining if a Device Can Be Replaced . 168
Devices That Cannot be Replaced . 169
Replacing a Device in a ZFS Storage Pool . 169
Viewing Resilvering Status . 169

10.7 Repairing Damaged Data . 171
Identifying the Type of Data Corruption . 171
Repairing a Corrupted File or Directory . 172
Repairing ZFS Storage Pool-Wide Damage . 174

10.8 Repairing an Unbootable System . 174

List of Tables

1 Typographic Conventions . ix
2 Shell Prompts . ix

4.1 ZFS Pool Property Descriptions . 55

5.1 ZFS Native Property Descriptions . 75
5.2 Types of ZFS Datasets . 88
5.3 Possible SOURCE Values (zfs get) . 90

7.1 ACL Entry Types . 118
7.2 ACL Access Privileges . 118
7.3 ACL Inheritance Flags . 119

vi

Preface

The ZFS Administration Guide provides information about setting up and managing ZFS file systems.

This guide contains information for both SPARC® based and x86 based systems.

Note
This illumos release supports systems that use the SPARC and x86 families of processor architectures:
UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported systems appear in the
illumos Hardware Compatibility List. This document cites any implementation differences between the
platform types.
In this document these x86 terms mean the following:

• “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.

• “x64” points out specific 64-bit information about AMD64 or EM64T systems.

• “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the illumos Hardware Compatibility List.

Who Should Use This Book

This guide is intended for anyone who is interested in setting up and managing ZFS file systems. Experience
using illumos or another UNIX® operating system is recommended.

How This Book Is Organized

The following table describes the chapters in this book.

Chapter Description

Chapter 1
Provides an overview of ZFS and its features and benefits. It also
covers some basic concepts and terminology.

Chapter 2

Provides step-by-step instructions on setting up simple ZFS
configurations with simple pools and file systems. This chapter also
provides the hardware and software required to create ZFS file
systems.

vii

PREFACE

Chapter Description

Chapter 3

Identifies important features that make ZFS significantly different
from traditional file systems. Understanding these key differences
will help reduce confusion when using traditional tools to interact
with ZFS.

Chapter 4
Provides a detailed description of how to create and administer
storage pools.

Chapter 5

Provides detailed information about managing ZFS file systems.
Included are such concepts as hierarchical file system layout,
property inheritance, and automatic mount point management and
share interactions.

Chapter 6 Describes how to create and administer ZFS snapshots and clones.

Chapter 7
Describes how to use access control lists (ACLs) to protect your
ZFS files by providing more granular permissions then the standard
UNIX permissions.

Chapter 9
Provides information on using ZFS volumes, using ZFS with zones,
and alternate root pools.

Chapter 10
Describes how to identify ZFS failure modes and how to recover
from them. Steps for preventing failures are covered as well.

Related Books

Related information about general Solaris system administration topics can be found in the following
books:

• Solaris System Administration: Basic Administration

• Solaris System Administration: Advanced Administration

• Solaris System Administration: Devices and File Systems

• Solaris System Administration: Security Services

• Solaris Volume Manager Administration Guide

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

• Documentation

• Support

• Training

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

viii

Shell Prompts in Command Examples

Table 1: Typographic Conventions

Typeface Meaning Example

AaBbCc123
The names of commands, files, and
directories, and onscreen computer output

Edit your .login file.
Use ls-a to list all files.
machine_name% you
have mail.

AaBbCc123
What you type, contrasted with onscreen
computer output

machine_name% su
Password:

aabbcc123
Placeholder: replace with a real name or
value

The command to remove a file is
rm filename.

AaBbCc123
Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.
A cache is a copy that is stored
locally.
Do not save the file.
Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for the C shell, Bourne
shell, and Korn shell.

Table 2: Shell Prompts

Shell Prompt
C shell machine_name%
C shell for superuser machine_name#
Bourne shell and Korn shell $
Bourne shell and Korn shell for superuser #

ix

Chapter 1

ZFS File System (Introduction)

This chapter provides an overview of the ZFS file system and its features and benefits. This chapter also
covers some basic terminology used throughout the rest of this book.

The following sections are provided in this chapter:

• Section 1.1

• Section 1.2

• Section 1.3

• Section 1.4

1.1 What’s New in ZFS?

This section summarizes new features in the ZFS file system.

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

1

1. ZFS FILE SYSTEM (INTRODUCTION)

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

• Section 1.1

2

1.1. What’s New in ZFS?

Using Cache Devices in Your ZFS Storage Pool

Solaris Express Developer Edition 1/08: In this Solaris release, you can create pool and specify cache
devices, which are used to cache storage pool data.

Cache devices provide an additional layer of caching between main memory and disk. Using cache devices
provide the greatest performance improvement for random read-workloads of mostly static content.

One or more cache devices can specified when the pool is created. For example:

zpool create pool mirror c0t2d0 c0t4d0 cache c0t0d0
zpool status pool

pool: pool
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
pool ONLINE 0 0 0
mirror ONLINE 0 0 0
c0t2d0 ONLINE 0 0 0
c0t4d0 ONLINE 0 0 0

cache
c0t0d0 ONLINE 0 0 0

errors: No known data errors

After cache devices are added, they gradually fill with content from main memory. Depending on the size
of your cache device, it could take over an hour for them to fill. Capacity and reads can be monitored by
using the zpool iostat command as follows:

zpool iostat -v pool 5

Cache devices can be added or removed from the pool after the pool is created.

For more information, see Section 4.3 and Example 4.3.

Enhancements to the zfs send Command

Solaris Express Developer Edition 1/08: This release includes the following enhancements to the zfs
send command.

• Send all incremental streams from one snapshot to a cumulative snapshot. For example:

zfs list
NAME USED AVAIL REFER MOUNTPOINT
pool 428K 16.5G 20K /pool
pool/fs 71K 16.5G 21K /pool/fs
pool/fs@snapA 16K - 18.5K -
pool/fs@snapB 17K - 20K -
pool/fs@snapC 17K - 20.5K -
pool/fs@snapD 0 - 21K -
zfs send -I pool/fs@snapA pool/fs@snapD > /snaps/fs@combo

Send all incremental snapshots between fs@snapA to fs@snapD to fs@combo.

3

1. ZFS FILE SYSTEM (INTRODUCTION)

• Send an incremental stream from the origin snapshot to create a clone. The original snapshot must
already exist on the receiving side to accept the incremental stream. For example:

zfs send -I pool/fs@snap1 pool/clone@snapA > /snaps/fsclonesnap-I
.
.
zfs receive -F pool/clone < /snaps/fsclonesnap-I

• Send a replication stream of all descendent file systems, up to the named snapshots. When received, all
properties, snapshots, descendent file systems, and clones are preserved. For example:

zfs send -R pool/fs@snap > snaps/fs-R

For an extended example, see Example 6.1.

• Send an incremental replication stream.

zfs send -R -[iI] @snapA pool/fs@snapD

For an extended example, see Example 6.1.

For more information, see Section 6.3.

ZFS Quotas and Reservations for File System Data Only

Solaris Express Developer Edition 1/08: In addition to the existing ZFS quota and reservation features,
this release includes dataset quotas and reservations that do not include descendents, such as snapshots
and clones, in the space consumption accounting.

• The refquota property limits the amount of space a dataset can consume. This property enforces a
hard limit on the amount of space that can be used. This hard limit does not include space used by
descendents, such as snapshots and clones.

• The refreservation property sets the minimum amount of space that is guaranteed to a dataset,
not including its descendents.

For example, you can set a 10 Gbyte refquota for studentA that sets a 10-Gbyte hard limit of referenced
space. For additional flexibility, you can set a 20-Gbyte quota that allows you to manage studentA’s
snapshots.

zfs set refquota=10g tank/studentA
zfs set quota=20g tank/studentA

For more information, see Section 5.6.

ZFS File System Properties for the Solaris CIFS Service

Solaris Express Developer Edition 1/08: This release provides support for the Solaris Common Internet
File System (CIFS) service. This product provides the ability to share files between Solaris and Windows
or MacOS systems.

To facilitate sharing files between these systems by using the Solaris CIFS service, the following new ZFS
properties are provided:

4

1.1. What’s New in ZFS?

• Case sensitivity support (casesensitivity)

• Non-blocking mandatory locks (nbmand)

• SMB share support (sharesmb)

• Unicode normalization support (normalization)

• UTF-8 character set support (utf8only)

Currently, the sharesmb property is available to share ZFS files in the Solaris CIFS environment. More
ZFS CIFS-related properties will be available in an upcoming release. For information about using the
sharesmb property, see Section 5.5.

In addition to the ZFS properties added for supporting the Solaris CIFS software product, the vscan
property is available for scanning ZFS files if you have a 3rd-party virus scanning engine.

ZFS Storage Pool Properties

Solaris Express Developer Edition 1/08: ZFS storage pool properties were introduced in an earlier
release. This release provides for additional property information. For example:

zpool get all users
NAME PROPERTY VALUE SOURCE
users size 16.8G -
users used 217M -
users available 16.5G -
users capacity 1% -
users altroot - default
users health ONLINE -
users guid 11063207170669925585 -
users version 8 default
users bootfs - default
users delegation on default
users autoreplace off default
users temporary on local

For a description of these properties, see Table 4.1.

• The cachefile property – Solaris Express Developer Edition 1/08: This release provides the cac
hefile property, which controls where pool configuration information is cached. All pools in the cache
are automatically imported when the system boots. However, installation and clustering environments
might need to cache this information in a different location so that pools are not automatically imported.

You can set this property to cache pool configuration in a different location that can be imported later by
using the zpool import c command. For most ZFS configurations, this property would not be used.

The cachefile property is not persistent and is not stored on disk. This property replaces the
temporary property that was used to indicate that pool information should not be cached in previous
Solaris releases.

• The failmode property – Solaris Express Developer Edition 1/08: This release provides the fai
lmode property for determining the behavior of a catastrophic pool failure due to a loss of device
connectivity or the failure of all devices in the pool. The failmode property can be set to these values:

5

1. ZFS FILE SYSTEM (INTRODUCTION)

wait, continue, or panic. The default value is wait, which means you must reconnect the device
or replace a failed device and clear the error with the zpool clear command.

The failmode property is set like other settable ZFS properties, which can be set either before or after
the pool is created. For example:

zpool set failmode=continue tank
zpool get failmode tank
NAME PROPERTY VALUE SOURCE
tank failmode continue local

zpool create -o failmode=continue

For a description of all ZFS pool properties, see Table 4.1.

ZFS and File System Mirror Mounts

Solaris Express Developer Edition 1/08: In this Solaris release, NFSv4 mount enhancements are pro-
vided to make ZFS file systems more accessible to NFS clients.

When file systems are created on the NFS server, the NFS client can automatically discover these newly
created file systems within their existing mount of a parent file system.

For example, if the server neo already shares the tank file system and client zee has it mounted,
/tank/baz is automatically visible on the client after it is created on the server.

zee# mount neo:/tank /mnt
zee# ls /mnt
baa bar

neo# zfs create tank/baz

zee% ls /mnt
baa bar baz
zee% ls /mnt/baz
file1 file2

ZFS Command History Enhancements (zpool history)

Solaris Express Developer Edition 9/07: The zpool history command has been enhanced to provide the
following new features:

• ZFS file system event information

• A -l option for displaying a long format that includes the user name, the hostname, and the zone in
which the operation was performed

• A -i option for displaying internal event information that can be used for diagnostic purposes

For example, the zpool history command provides both zpool command events and zfs command events.

6

1.1. What’s New in ZFS?

zpool history users
History for ’users’:
2007-04-26.12:44:02 zpool create users mirror c0t8d0 c0t9d0 c0t10d0
2007-04-26.12:44:38 zfs create users/markm
2007-04-26.12:44:47 zfs create users/marks
2007-04-26.12:44:57 zfs create users/neil
2007-04-26.12:47:15 zfs snapshot -r users/home@yesterday
2007-04-26.12:54:50 zfs snapshot -r users/home@today
2007-04-26.13:29:13 zfs create users/snapshots
2007-04-26.13:30:00 zfs create -o compression=gzip users/snapshots
2007-04-26.13:31:24 zfs create -o compression=gzip-9 users/oldfiles
2007-04-26.13:31:47 zfs set copies=2 users/home
2007-06-25.14:22:52 zpool offline users c0t10d0
2007-06-25.14:52:42 zpool online users c0t10d0
2007-06-25.14:53:06 zpool upgrade users

The zpool history -i option provides internal event information. For example:

zpool history -i

.

.

.
2007-08-08.15:10:02 [internal create txg:348657] dataset = 83
2007-08-08.15:10:03 zfs create tank/mark
2007-08-08.15:27:41 [internal permission update txg:348869] ul$76928 create dataset = 5
2007-08-08.15:27:41 [internal permission update txg:348869] ul$76928 destroy dataset = 5
2007-08-08.15:27:41 [internal permission update txg:348869] ul$76928 mount dataset = 5
2007-08-08.15:27:41 [internal permission update txg:348869] ud$76928 create dataset = 5
2007-08-08.15:27:41 [internal permission update txg:348869] ud$76928 destroy dataset = 5
2007-08-08.15:27:41 [internal permission update txg:348869] ud$76928 mount dataset = 5
2007-08-08.15:27:41 zfs allow marks create,destroy,mount tank
2007-08-08.15:27:59 [internal permission update txg:348873] ud$76928 snapshot dataset = 5
2007-08-08.15:27:59 zfs allow -d marks snapshot tank

The zpool history -l option provides a long format. For example:

zpool history -l tank
History for ’tank’:
2007-07-19.10:55:13 zpool create tank mirror c0t1d0 c0t11d0 [user root on neo:global]
2007-07-19.10:55:19 zfs create tank/cindys [user root on neo:global]
2007-07-19.10:55:49 zfs allow cindys create,destroy,mount,snapshot tank/cindys [user root on neo:global]
2007-07-19.10:56:24 zfs create tank/cindys/data [user cindys on neo:global]

For more information about using the zpool history command, see Section 10.3.

Upgrading ZFS File Systems (zfs upgrade)

Solaris Express Developer Edition 9/07: The zfs upgrade command is included in this release to provide
future ZFS file system enhancements to existing file systems. ZFS storage pools have a similar upgrade
feature to provide pool enhancements to existing storage pools.

For example:

zfs upgrade
This system is currently running ZFS filesystem version 2.

7

1. ZFS FILE SYSTEM (INTRODUCTION)

The following filesystems are out of date, and can be upgraded. After being
upgraded, these filesystems (and any ’zfs send’ streams generated from
subsequent snapshots) will no longer be accessible by older software versions.

VER FILESYSTEM
--- ------------
1 datab
1 datab/users
1 datab/users/area51

Note
File systems that are upgraded and any streams created from those upgraded file systems by the zfs
send command are not accessible on systems that are running older software releases.

However, no new ZFS file system upgrade features are provided in this release.

ZFS Delegated Administration

Solaris Express Developer Edition 9/07: In this release, you can delegate fine-grained permissions to
perform ZFS administration tasks to non-privileged users.

You can use the zfs allow and zfs unallow commands to grant and remove permissions.

You can modify the ability to use delegated administration with the pool’s delegation property. For
example:

zpool get delegation users
NAME PROPERTY VALUE SOURCE
users delegation on default
zpool set delegation=off users
zpool get delegation users
NAME PROPERTY VALUE SOURCE
users delegation off local

By default, the delegation property is enabled.

For more information, see Chapter 8 and zfs(1M).

Setting Up Separate ZFS Logging Devices

Solaris Express Developer Edition 9/07: The ZFS intent log (ZIL) is provided to satisfy POSIX require-
ments for synchronous transactions. For example, databases often require their transactions to be on stable
storage devices when returning from a system call. NFS and other applications can also use fsync() to
ensure data stability. By default, the ZIL is allocated from blocks within the main storage pool. However,
better performance might be possible by using separate intent log devices in your ZFS storage pool, such
as with NVRAM or a dedicated disk.

Log devices for the ZFS intent log are not related to database log files.

You can set up a ZFS logging device when the storage pool is created or after the pool is created. For
examples of setting up log devices, see Section 4.3 and Section 4.4.

8

1.1. What’s New in ZFS?

You can attach a log device to an existing log device to create a mirrored log device. This operation is
identical to attaching a device in a unmirrored storage pool.

Consider the following points when determining whether setting up a ZFS log device is appropriate for
your environment:

• Any performance improvement seen by implementing a separate log device depends on the device type,
the hardware configuration of the pool, and the application workload. For preliminary performance
information, see this blog:

http://blogs.oracle.com/perrin/entry/slog_blog_or_blogging_on

• Log devices can be unreplicated or mirrored, but RAIDZ is not supported for log devices.

• If a separate log device is not mirrored and the device that contains the log fails, storing log blocks
reverts to the storage pool.

• Log devices can be added, replaced, attached, detached, and imported and exported as part of the larger
storage pool. Currently, log devices cannot be removed.

• The minimum size of a log device is the same as the minimum size of device in pool, which is 64
Mbytes. The amount of in-play data that might be stored on a log device is relatively small. Log blocks
are freed when the log transaction (system call) is committed.

• The maximum size of a log device should be approximately 1/2 the size of physical memory because
that is the maximum amount of potential in-play data that can be stored. For example, if a system has 16
Gbytes of physical memory, consider a maximum log device size of 8 Gbytes.

Creating Intermediate ZFS Datasets

Solaris Express Developer Edition 9/07: You can use the -p option with the zfs create, zfs clone, and
zfs rename commands to quickly create a non-existent intermediate dataset, if it doesn’t already exist.

For example, create ZFS datasets (users/area51) in the datab storage pool.
zfs list
NAME USED AVAIL REFER MOUNTPOINT
datab 106K 16.5G 18K /datab
zfs create -p -o compression=on datab/users/area51

If the intermediate dataset exists during the create operation, the operation completes successfully.

Properties specified apply to the target dataset, not to the intermediate datasets. For example:
zfs get mountpoint,compression datab/users/area51
NAME PROPERTY VALUE SOURCE
datab/users/area51 mountpoint /datab/users/area51 default
datab/users/area51 compression on local

The intermediate dataset is created with the default mount point. Any additional properties are disabled
for the intermediate dataset. For example:
zfs get mountpoint,compression datab/users
NAME PROPERTY VALUE SOURCE
datab/users mountpoint /datab/users default
datab/users compression off default

For more information, see zfs(1M).

9

1. ZFS FILE SYSTEM (INTRODUCTION)

ZFS Hotplugging Enhancements

Solaris Express Developer Edition 9/07: In this release, ZFS more effectively responds to devices
that are removed and provides a mechanism to automatically identify devices that are inserted with the
following enhancements:

• You can replace an existing device with an equivalent device without having to use the zpool replace
command.

The autoreplace property controls automatic device replacement. If set to off, device replacement
must be initiated by the administrator by using the zpool replace command. If set to on, any new device,
found in the same physical location as a device that previously belonged to the pool, is automatically
formatted and replaced. The default behavior is off.

• The storage pool state REMOVED is provided when a device or hot spare has been removed if the device
was physically removed while the system was running. A hot-spare device is substituted for the removed
device, if available.

• If a device is removed and then inserted, the device is placed online. If a hot-spare was activated when
the device is re-inserted, the spare is removed when the online operation completes.

• Automatic detection when devices are removed or inserted is hardware-dependent and might not be
supported on all platforms. For example, USB devices are automatically configured upon inserted.
However, you might have to use the cfgadm -c configure command to configure a SATA drive.

• Hot spares are checked periodically to make sure they are online and available.

For more information, see zpool(1M).

Recursively Renaming ZFS Snapshots (zfs rename -r)

Solaris Express Developer Edition 5/07: You can recursively rename all descendent ZFS snapshots by
using the zfs rename -r command.

For example, snapshot a set of ZFS file systems.

zfs snapshot -r users/home@today
zfs list
NAME USED AVAIL REFER MOUNTPOINT
users 216K 16.5G 20K /users
users/home 76K 16.5G 22K /users/home
users/home@today 0 - 22K -
users/home/markm 18K 16.5G 18K /users/home/markm
users/home/markm@today 0 - 18K -
users/home/marks 18K 16.5G 18K /users/home/marks
users/home/marks@today 0 - 18K -
users/home/neil 18K 16.5G 18K /users/home/neil
users/home/neil@today 0 - 18K -

Then, rename the snapshots the following day.

zfs rename -r users/home@today @yesterday
zfs list
NAME USED AVAIL REFER MOUNTPOINT
users 216K 16.5G 20K /users

10

1.1. What’s New in ZFS?

users/home 76K 16.5G 22K /users/home
users/home@yesterday 0 - 22K -
users/home/markm 18K 16.5G 18K /users/home/markm
users/home/markm@yesterday 0 - 18K -
users/home/marks 18K 16.5G 18K /users/home/marks
users/home/marks@yesterday 0 - 18K -
users/home/neil 18K 16.5G 18K /users/home/neil
users/home/neil@yesterday 0 - 18K -

Snapshots are the only dataset that can be renamed recursively. For more information about snapshots, see
Section 6.1.

GZIP Compression is Available for ZFS

Solaris Express Developer Edition 5/07: In this Solaris release, you can set gzip compression on ZFS
file systems in addition to lzjb compression. You can specify compression as gzip, the default, or
gzip-N , where N equals 1 through 9. For example:

zfs create -o compression=gzip users/home/snapshots
zfs get compression users/home/snapshots
NAME PROPERTY VALUE SOURCE
users/home/snapshots compression gzip local
zfs create -o compression=gzip-9 users/home/oldfiles
zfs get compression users/home/oldfiles
NAME PROPERTY VALUE SOURCE
users/home/oldfiles compression gzip-9 local

For more information about setting ZFS properties, see Section 5.4.

Storing Multiple Copies of ZFS User Data

Solaris Express Developer Edition 5/07: As a reliability feature, ZFS file system metadata is automati-
cally stored multiple times across different disks, if possible. This feature is known as ditto blocks.

In this Solaris release, you can specify that multiple copies of user data is also stored per file system by
using the zfs set copies command. For example:

zfs set copies=2 users/home
zfs get copies users/home
NAME PROPERTY VALUE SOURCE
users/home copies 2 local

Available values are 1, 2, or 3. The default value is 1. These copies are in addition to any pool-level
redundancy, such as in a mirrored or RAID-Z configuration.

The benefits of storing multiple copies of ZFS user data are as follows:

• Improves data retention by allowing recovery from unrecoverable block read faults, such as media faults
(bit rot) for all ZFS configurations.

• Provides data protection even in the case where only a single disk is available.

• Allows you to select data protection policies on a per-file system basis, beyond the capabilities of the
storage pool.

11

1. ZFS FILE SYSTEM (INTRODUCTION)

Depending on the allocation of the ditto blocks in the storage pool, multiple copies might be placed on a
single disk. A subsequent full disk failure might cause all ditto blocks to be unavailable.

You might consider using ditto blocks when you accidentally create a non-redundant pool and when you
need to set data retention policies.

For a detailed description of how setting copies on a system with a single-disk pool or a multiple-disk
pool might impact overall data protection, see this blog entry. For more information about setting ZFS
properties, see Section 5.4.

Improved zpool status Output

Solaris Express 1/07: You can use the zpool status -v command to display a list of files with persistent
errors. Previously, you had to use the find -inum command to identify the filenames from the list of
displayed inodes.

For more information about displaying a list of files with persistent errors, see Section 10.7.

ZFS and Solaris iSCSI Improvements

Solaris Express, Developer Edition 2/07: In this Solaris release, you can create a ZFS volume as a
Solaris iSCSI target device by setting the shareiscsi property on the ZFS volume. This method is a
convenient way to quickly set up a Solaris iSCSI target. For example:

zfs create -V 2g tank/volumes/v2
zfs set shareiscsi=on tank/volumes/v2
iscsitadm list target
Target: tank/volumes/v2

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a
Connections: 0

After the iSCSI target is created, set up the iSCSI initiator. For information about setting up a Solaris iSCSI
initiator, see Chapter 14, Configuring Solaris iSCSI Targets and Initiators (Tasks), in System Administration
Guide: Devices and File Systems.

For more information about managing a ZFS volume as an iSCSI target, see Section 9.1.

Sharing ZFS File System Enhancements

Solaris Express, Developer Edition 2/07: In this Solaris release, the process of sharing file systems
has been improved. Although modifying system configuration files, such as /etc/dfs/dfstab, is
unnecessary for sharing ZFS file systems, you can use the sharemgr command to manage ZFS share
properties. The sharemgr command enables you to set and manage share properties on share groups. ZFS
shares are automatically designated in the zfs share group.

As in previous releases, you can set the ZFS sharenfs property on a ZFS file system to share a ZFS file
system. For example:

zfs set sharenfs=on tank/home

Or, you can use the new sharemgr add-share subcommand to share a ZFS file system in the zfs share
group. For example:

12

1.1. What’s New in ZFS?

sharemgr add-share -s tank/data zfs
sharemgr show -vp zfs
zfs nfs=()

zfs/tank/data
/tank/data
/tank/data/1
/tank/data/2
/tank/data/3

Then, you can use the sharemgr command to manage ZFS shares. The following example shows how to
use sharemgr to set the nosuid property on the shared ZFS file systems. You must preface ZFS share
paths with /zfs designation.

sharemgr set -P nfs -p nosuid=true zfs/tank/data
sharemgr show -vp zfs
zfs nfs=()

zfs/tank/data nfs=(nosuid="true")
/tank/data
/tank/data/1
/tank/data/2
/tank/data/3

For more information, see sharemgr(1M).

ZFS Command History (zpool history)

Solaris Express 12/06: In this Solaris release, ZFS automatically logs successful zfs and zpool commands
that modify pool state information. For example:

zpool history
History for ’newpool’:
2007-04-25.11:37:31 zpool create newpool mirror c0t8d0 c0t10d0
2007-04-25.11:37:46 zpool replace newpool c0t10d0 c0t9d0
2007-04-25.11:38:04 zpool attach newpool c0t9d0 c0t11d0
2007-04-25.11:38:09 zfs create newpool/user1
2007-04-25.11:38:15 zfs destroy newpool/user1

History for ’tank’:
2007-04-25.11:46:28 zpool create tank mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0

This features enables you or Sun support personnel to identify the exact set of ZFS commands that was
executed to troubleshoot an error scenario.

You can identify a specific storage pool with the zpool history command. For example:

zpool history newpool
History for ’newpool’:
History for ’newpool’:
2007-04-25.11:37:31 zpool create newpool mirror c0t8d0 c0t10d0
2007-04-25.11:37:46 zpool replace newpool c0t10d0 c0t9d0
2007-04-25.11:38:04 zpool attach newpool c0t9d0 c0t11d0
2007-04-25.11:38:09 zfs create newpool/user1
2007-04-25.11:38:15 zfs destroy newpool/user1

The features of the history log are as follows:

13

1. ZFS FILE SYSTEM (INTRODUCTION)

• The log cannot be disabled.

• The log is saved persistently on disk, which means the log is saved across system reboots.

• The log is implemented as a ring buffer. The minimum size is 128 Kbytes. The maximum size is 32
Mbytes.

• For smaller pools, the maximum size is capped at 1% of the pool size, where size is determined at
pool creation time.

• Requires no administration, which means tuning the size of the log or changing the location of the log is
unnecessary.

Currently, the zpool history command does not record user-ID, hostname, or zone-name.

For more information about troubleshooting ZFS problems, see Section 10.3.

ZFS Property Improvements

ZFS xattr Property

Solaris Express 1/07: You can use the xattr property to disable or enable extended attributes for a
specific ZFS file system. The default value is on. For a description of ZFS properties, see Section 5.2.

ZFS canmount Property

Solaris Express 10/06: The new canmount property allows you to specify whether a dataset can be
mounted by using the zfs mount command. For more information, see Section 5.2.

ZFS User Properties

Solaris Express 10/06: In addition to the standard native properties that can either export internal statistics
or control ZFS file system behavior, ZFS supports user properties. User properties have no effect on
ZFS behavior, but you can use them to annotate datasets with information that is meaningful in your
environment.

For more information, see Section 5.2.

Setting Properties When Creating ZFS File Systems

Solaris Express 10/06: In this Solaris release, you can set properties when you create a file system, in
addition to setting properties after the file system is created.

The following examples illustrate equivalent syntax:

zfs create tank/home
zfs set mountpoint=/export/zfs tank/home
zfs set sharenfs=on tank/home
zfs set compression=on tank/home

zfs create -o mountpoint=/export/zfs -o sharenfs=on -o compression=on tank/home

14

1.1. What’s New in ZFS?

Displaying All ZFS File System Information

Solaris Express 10/06: In this Solaris release, you can use various forms of the zfs get command to
display information about all datasets if you do not specify a dataset. In previous releases, all dataset
information was not retreivable with the zfs get command.

For example:

zfs get -s local all
tank/home atime off local
tank/home/bonwick atime off local
tank/home/marks quota 50G local

New zfs receive -F Option

Solaris Express 10/06: In this Solaris release, you can use the new -F option to the zfs receive command
to force a rollback of the file system to the most recent snapshot before doing the receive. Using this
option might be necessary when the file system is modified between the time a rollback occurs and the
receive is initiated.

For more information, see Section 6.3.

Recursive ZFS Snapshots

Solaris Express 8/06: When you use the zfs snapshot command to create a file system snapshot, you can
use the -r option to recursively create snapshots for all descendent file systems. In addition, using the -r
option recursively destroys all descendent snapshots when a snapshot is destroyed.

Recursive ZFS snapshots are created quickly as one atomic operation. The snapshots are created together
(all at once) or not created at all. The benefit of atomic snapshots operations is that the snapshot data is
always taken at one consistent time, even across descendent file systems.

For more information, see Section 6.1.

Double Parity RAID-Z (raidz2)

Solaris Express 7/06: A redundant RAID-Z configuration can now have either single- or double-parity,
which means that one or two device failures can be sustained respectively, without any data loss. You can
specify the raidz2 keyword for a double-parity RAID-Z configuration. Or, you can specify the raidz
or raidz1 keyword for a single-parity RAID-Z configuration.

For more information, see Section 4.3 or zpool(1M).

Hot Spares for ZFS Storage Pool Devices

Solaris Express 7/06: The ZFS hot spares feature enables you to identify disks that could be used to
replace a failed or faulted device in one or more storage pools. Designating a device as a hot spare means
that if an active device in the pool fails, the hot spare automatically replaces the failed device. Or, you can
manually replace a device in a storage pool with a hot spare.

For more information, see Section 4.4 and zpool(1M).

15

1. ZFS FILE SYSTEM (INTRODUCTION)

Replacing a ZFS File System With a ZFS Clone (zfs promote)

Solaris Express 7/06: The zfs promote command enables you to replace an existing ZFS file system
with a clone of that file system. This feature is helpful when you want to run tests on an alternative version
of a file system and then, make that alternative version of the file system the active file system.

For more information, see Section 6.2 and zfs(1M).

Upgrading ZFS Storage Pools (zpool upgrade)

Solaris Express 6/06: You can upgrade your storage pools to a newer version to take advantage of the
latest features by using the zpool upgrade command. In addition, the zpool status command has been
modified to notify you when your pools are running older versions.

For more information, see Section 4.7 and zpool(1M).

If you want to use the ZFS Administration console on a system with a pool from a previous Solaris release,
make sure you upgrade your pools before using the ZFS Administration console. To see if your pools need
to be upgraded, use the zpool status command. For information about the ZFS Administration console,
see Section 1.1.

Using ZFS to Clone Non-Global Zones and Other Enhancements

Solaris Express 6/06: When the source zonepath and the target zonepath both reside on ZFS and
are in the same pool, zoneadm clone now automatically uses the ZFS clone feature to clone a zone. This
enhancement means that zoneadm clone will take a ZFS snapshot of the source zonepath and set up
the target zonepath. The snapshot is named SUNWzoneX, where X is a unique ID used to distinguish
between multiple snapshots. The destination zone’s zonepath is used to name the ZFS clone. A software
inventory is performed so that a snapshot used at a future time can be validated by the system. Note that
you can still specify that the ZFS zonepath be copied instead of the ZFS clone, if desired.

To clone a source zone multiple times, a new parameter added to zoneadm allows you to specify that an
existing snapshot should be used. The system validates that the existing snapshot is usable on the target.
Additionally, the zone install process now has the capability to detect when a ZFS file system can be
created for a zone, and the uninstall process can detect when a ZFS file system in a zone can be destroyed.
These steps are then performed automatically by the zoneadm command.

Keep the following points in mind when using ZFS on a system with containers:

• Do not use the ZFS snapshot features to clone a zone

• You can delegate or a add a ZFS file system to a non-global zone. For more information, see Section 9.2
or Section 9.2.

• Do not use a ZFS file system for a global zone root path or a non-global zone root path in the Solaris
10 releases. You can use ZFS as a zone root path in the Solaris Express releases, but keep in mind that
patching or upgrading these zones is not supported.

For more information, see System Administration Guide: Virtualization Using the Solaris Operating
System.

16

1.1. What’s New in ZFS?

ZFS Backup and Restore Commands are Renamed

Solaris Express 5/06: In this Solaris release, the zfs backup and zfs restore commands are renamed to
zfs send and zfs receive to more accurately describe their function. The function of these commands is to
save and restore ZFS data stream representations.

For more information about these commands, see Section 6.3.

Recovering Destroyed Storage Pools

Solaris Express 5/06: This release includes the zpool import -D command, which enables you to recover
pools that were previously destroyed with the zpool destroy command.

For more information, see Section 4.7.

ZFS is Integrated With Fault Manager

Solaris Express 4/06: This release includes the integration of a ZFS diagnostic engine that is capable
of diagnosing and reporting pool failures and device failures. Checksum, I/O, device, and pool errors
associated with pool or device failures are also reported.

The diagnostic engine does not include predictive analysis of checksum and I/O errors, nor does it include
proactive actions based on fault analysis.

In the event of the ZFS failure, you might see a message similar to the following from fmd:
SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Fri Mar 10 11:09:06 MST 2006
PLATFORM: SUNW,Ultra-60, CSN: -, HOSTNAME: neo
SOURCE: zfs-diagnosis, REV: 1.0
EVENT-ID: b55ee13b-cd74-4dff-8aff-ad575c372ef8
DESC: A ZFS device failed. Refer to http://illumos.org/msg/ZFS-8000-D3 for more information.
AUTO-RESPONSE: No automated response will occur.
IMPACT: Fault tolerance of the pool may be compromised.
REC-ACTION: Run ’zpool status -x’ and replace the bad device.

By reviewing the recommended action, which will be to follow the more specific directions in the zpool
status command, you will be able to quickly identify and resolve the failure.

For an example of recovering from a reported ZFS problem, see Section 10.5.

New zpool clear Command

Solaris Express 4/06: This release includes the zpool clear command for clearing error counts associated
with a device or the pool. Previously, error counts were cleared when a device in a pool was brought online
with the zpool online command. For more information, see zpool(1M) and Section 4.4.

Compact NFSv4 ACL Format

Solaris Express 4/06: In this release, three NFSv4 ACL formats are available: verbose, positional, and
compact. The new compact and positional ACL formats are available to set and display ACLs. You can
use the chmod command to set all 3 ACL formats. You can use the ls -V command to display compact
and positional ACL formats and the ls -v command to display verbose ACL formats.

For more information, see Section 7.4, chmod(1), and ls(1).

17

1. ZFS FILE SYSTEM (INTRODUCTION)

File System Monitoring Tool (fsstat)

Solaris Express 4/06: A new file system monitoring tool, fsstat, is available to report file system oper-
ations. Activity can be reported by mount point or by file system type. The following example shows
general ZFS file system activity.

$ fsstat zfs
new name name attr attr lookup rddir read read write write
file remov chng get set ops ops ops bytes ops bytes

7.82M 5.92M 2.76M 1.02G 3.32M 5.60G 87.0M 363M 1.86T 20.9M 251G zfs

For more information, see fsstat(1M).

ZFS Web-Based Management

Solaris Express 1/06: A web-based ZFS management tool is available to perform many administrative
actions. With this tool, you can perform the following tasks:

• Create a new storage pool.

• Add capacity to an existing pool.

• Move (export) a storage pool to another system.

• Import a previously exported storage pool to make it available on another system.

• View information about storage pools.

• Create a file system.

• Create a volume.

• Take a snapshot of a file system or a volume.

• Roll back a file system to a previous snapshot.

You can access the ZFS Administration console through a secure web browser at the following URL:

https://system-name:6789/zfs

If you type the appropriate URL and are unable to reach the ZFS Administration console, the server might
not be started. To start the server, run the following command:

/usr/sbin/smcwebserver start

If you want the server to run automatically when the system boots, run the following command:

/usr/sbin/smcwebserver enable

Note
You cannot use the Solaris Management Console (smc) to manage ZFS storage pools or file systems.

18

1.2. What Is ZFS?

You will not be able to manage ZFS file systems remotely with the ZFS Administration console because
of a change in a recent Solaris release, which shutdown some network services automatically. Use the
following command to enable these services:

netservices open

1.2 What Is ZFS?

The ZFS file system is a revolutionary new file system that fundamentally changes the way file systems
are administered, with features and benefits not found in any other file system available today. ZFS has
been designed to be robust, scalable, and simple to administer.

ZFS Pooled Storage

ZFS uses the concept of storage pools to manage physical storage. Historically, file systems were con-
structed on top of a single physical device. To address multiple devices and provide for data redundancy,
the concept of a volume manager was introduced to provide the image of a single device so that file
systems would not have to be modified to take advantage of multiple devices. This design added another
layer of complexity and ultimately prevented certain file system advances, because the file system had no
control over the physical placement of data on the virtualized volumes.

ZFS eliminates the volume management altogether. Instead of forcing you to create virtualized volumes,
ZFS aggregates devices into a storage pool. The storage pool describes the physical characteristics of the
storage (device layout, data redundancy, and so on,) and acts as an arbitrary data store from which file
systems can be created. File systems are no longer constrained to individual devices, allowing them to
share space with all file systems in the pool. You no longer need to predetermine the size of a file system,
as file systems grow automatically within the space allocated to the storage pool. When new storage is
added, all file systems within the pool can immediately use the additional space without additional work.
In many ways, the storage pool acts as a virtual memory system. When a memory DIMM is added to a
system, the operating system doesn’t force you to invoke some commands to configure the memory and
assign it to individual processes. All processes on the system automatically use the additional memory.

Transactional Semantics

ZFS is a transactional file system, which means that the file system state is always consistent on disk.
Traditional file systems overwrite data in place, which means that if the machine loses power, for example,
between the time a data block is allocated and when it is linked into a directory, the file system will be
left in an inconsistent state. Historically, this problem was solved through the use of the fsck command.
This command was responsible for going through and verifying file system state, making an attempt
to repair any inconsistencies in the process. This problem caused great pain to administrators and was
never guaranteed to fix all possible problems. More recently, file systems have introduced the concept
of journaling. The journaling process records action in a separate journal, which can then be replayed
safely if a system crash occurs. This process introduces unnecessary overhead, because the data needs to
be written twice, and often results in a new set of problems, such as when the journal can’t be replayed
properly.

With a transactional file system, data is managed using copy on write semantics. Data is never overwritten,
and any sequence of operations is either entirely committed or entirely ignored. This mechanism means

19

1. ZFS FILE SYSTEM (INTRODUCTION)

that the file system can never be corrupted through accidental loss of power or a system crash. So, no need
for a fsck equivalent exists. While the most recently written pieces of data might be lost, the file system
itself will always be consistent. In addition, synchronous data (written using the O_DSYNC flag) is always
guaranteed to be written before returning, so it is never lost.

Checksums and Self-Healing Data

With ZFS, all data and metadata is checksummed using a user-selectable algorithm. Traditional file systems
that do provide checksumming have performed it on a per-block basis, out of necessity due to the volume
management layer and traditional file system design. The traditional design means that certain failure
modes, such as writing a complete block to an incorrect location, can result in properly checksummed data
that is actually incorrect. ZFS checksums are stored in a way such that these failure modes are detected
and can be recovered from gracefully. All checksumming and data recovery is done at the file system
layer, and is transparent to applications.

In addition, ZFS provides for self-healing data. ZFS supports storage pools with varying levels of data
redundancy, including mirroring and a variation on RAID-5. When a bad data block is detected, ZFS
fetches the correct data from another redundant copy, and repairs the bad data, replacing it with the good
copy.

Unparalleled Scalability

ZFS has been designed from the ground up to be the most scalable file system, ever. The file system itself
is 128-bit, allowing for 256 quadrillion zettabytes of storage. All metadata is allocated dynamically, so
no need exists to pre-allocate inodes or otherwise limit the scalability of the file system when it is first
created. All the algorithms have been written with scalability in mind. Directories can have up to 248 (256
trillion) entries, and no limit exists on the number of file systems or number of files that can be contained
within a file system.

ZFS Snapshots

A snapshot is a read-only copy of a file system or volume. Snapshots can be created quickly and easily.
Initially, snapshots consume no additional space within the pool.

As data within the active dataset changes, the snapshot consumes space by continuing to reference the old
data. As a result, the snapshot prevents the data from being freed back to the pool.

Simplified Administration

Most importantly, ZFS provides a greatly simplified administration model. Through the use of hierarchical
file system layout, property inheritance, and automanagement of mount points and NFS share semantics,
ZFS makes it easy to create and manage file systems without needing multiple commands or editing
configuration files. You can easily set quotas or reservations, turn compression on or off, or manage mount
points for numerous file systems with a single command. Devices can be examined or repaired without
having to understand a separate set of volume manager commands. You can take an unlimited number of
instantaneous snapshots of file systems. You can backup and restore individual file systems.

ZFS manages file systems through a hierarchy that allows for this simplified management of properties
such as quotas, reservations, compression, and mount points. In this model, file systems become the

20

1.3. ZFS Terminology

central point of control. File systems themselves are very cheap (equivalent to a new directory), so you are
encouraged to create a file system for each user, project, workspace, and so on. This design allows you to
define fine-grained management points.

1.3 ZFS Terminology

This section describes the basic terminology used throughout this book:

checksum
A 256-bit hash of the data in a file system block. The checksum capability can range from the simple
and fast fletcher2 (the default) to cryptographically strong hashes such as SHA256.

clone
A file system whose initial contents are identical to the contents of a snapshot.

For information about clones, see Section 6.2.

dataset
A generic name for the following ZFS entities: clones, file systems, snapshots, or volumes.

Each dataset is identified by a unique name in the ZFS namespace. Datasets are identified using the
following format:

pool/path[@snapshot]

pool
Identifies the name of the storage pool that contains the dataset

path
Is a slash-delimited path name for the dataset object

snapshot
Is an optional component that identifies a snapshot of a dataset

For more information about datasets, see Chapter 5.

file system
A dataset that contains a standard POSIX file system.

For more information about file systems, see Chapter 5.

mirror
A virtual device that stores identical copies of data on two or more disks. If any disk in a mirror
fails, any other disk in that mirror can provide the same data.

pool A logical group of devices describing the layout and physical characteristics of the available storage.
Space for datasets is allocated from a pool.

For more information about storage pools, see Chapter 4.

RAID-Z
A virtual device that stores data and parity on multiple disks, similar to RAID-5. For more informa-
tion about RAID-Z, see Section 4.2.

21

1. ZFS FILE SYSTEM (INTRODUCTION)

resilvering
The process of transferring data from one device to another device is known as resilvering. For
example, if a mirror component is replaced or taken offline, the data from the up-to-date mirror
component is copied to the newly restored mirror component. This process is referred to as mirror
resynchronization in traditional volume management products.

For more information about ZFS resilvering, see Section 10.6.

snapshot
A read-only image of a file system or volume at a given point in time.

For more information about snapshots, see Section 6.1.

virtual device
A logical device in a pool, which can be a physical device, a file, or a collection of devices.

For more information about virtual devices, see Section 4.1.

volume
A dataset used to emulate a physical device. For example, you can create an ZFS volume as a swap
device.

For more information about ZFS volumes, see Section 9.1.

1.4 ZFS Component Naming Requirements

Each ZFS component must be named according to the following rules:

• Empty components are not allowed.

• Each component can only contain alphanumeric characters in addition to the following four special
characters:

– Underscore (_)

– Hyphen (-)

– Colon (:)

– Period (.)

• Pool names must begin with a letter, except for the following restrictions:

– The beginning sequence c[0-9] is not allowed

– The name log is reserved

– A name that begins with mirror, raidz, or spare is not allowed because these name are reserved.

In addition, pool names must not contain a percent sign (%)

• Dataset names must begin with an alphanumeric character. Dataset names must not contain a percent
sign (%).

22

Chapter 2

Getting Started With ZFS

This chapter provides step-by-step instructions on setting up simple ZFS configurations. By the end of
this chapter, you should have a basic idea of how the ZFS commands work, and should be able to create
simple pools and file systems. This chapter is not designed to be a comprehensive overview and refers to
later chapters for more detailed information.

The following sections are provided in this chapter:

• Section 2.1

• Section 2.2

• Section 2.3

• Section 2.4

2.1 ZFS Hardware and Software Requirements and Recommendations

Make sure you review the following hardware and software requirements and recommendations before
attempting to use the ZFS software:

• A SPARC™ or x86 system that is running the Solaris™ Nevada release, build 27 or later.

• The minimum disk size is 128 Mbytes. The minimum amount of disk space required for a storage pool
is approximately 64 Mbytes.

• Currently, the minimum amount of memory recommended to install a Solaris system is 512 Mbytes.
However, for good ZFS performance, at least one Gbyte or more of memory is recommended.

• If you create a mirrored disk configuration, multiple controllers are recommended.

2.2 Creating a Basic ZFS File System

ZFS administration has been designed with simplicity in mind. Among the goals of the ZFS design is to
reduce the number of commands needed to create a usable file system. When you create a new pool, a new
ZFS file system is created and mounted automatically.

23

2. GETTING STARTED WITH ZFS

The following example illustrates how to create a non-redundant storage pool named tank and a ZFS file
system name tank in one command. Assume that the whole disk /dev/dsk/c1t0d0 is available for
use.

zpool create tank c1t0d0

Note
This command creates a non-redundant pool. A non-redundant pool configuration is not recommended
for production environments even if the single storage object is presented from a hardware RAID array
or from a software volume manager. ZFS can only detect errors in these configurations. ZFS can
corrects error in pool configurations with redundant data. For more information, about redundant ZFS
pool configurations, see Section 4.2.

The new ZFS file system, tank, can use as much of the disk space on c1t0d0 as needed, and is
automatically mounted at /tank.

mkfile 100m /tank/foo
df -h /tank
Filesystem size used avail capacity Mounted on
tank 80G 100M 80G 1% /tank

Within a pool, you will probably want to create additional file systems. File systems provide points of
administration that allow you to manage different sets of data within the same pool.

The following example illustrates how to create a file system named fs in the storage pool tank. Assume
that the whole disk /dev/dsk/c1t0d0 is available for use.

zpool create tank mirror c1t0d0 c2t0d0
zfs create tank/fs

The new ZFS file system, tank/fs, can use as much of the disk space on c1t0d0 as needed, and is
automatically mounted at /tank/fs.

mkfile 100m /tank/fs/foo
df -h /tank/fs
Filesystem size used avail capacity Mounted on
tank/fs 80G 100M 80G 1% /tank/fs

In most cases, you will probably want to create and organize a hierarchy of file systems that matches your
organizational needs. For more information about creating a hierarchy of ZFS file systems, see Section 2.4.

2.3 Creating a ZFS Storage Pool

The previous example illustrates the simplicity of ZFS. The remainder of this chapter demonstrates a more
complete example similar to what you would encounter in your environment. The first tasks are to identify
your storage requirements and create a storage pool. The pool describes the physical characteristics of the
storage and must be created before any file systems are created. How to Identify Storage Requirements for
Your ZFS Storage Pool

24

2.3. Creating a ZFS Storage Pool

1. Determine available devices.

Before creating a storage pool, you must determine which devices will store your data. These
devices must be disks of at least 128 Mbytes in size, and they must not be in use by other parts of
the operating system. The devices can be individual slices on a preformatted disk, or they can be
entire disks that ZFS formats as a single large slice.

For the storage example used in [?task], assume that the whole disks /dev/dsk/c1t0d0 and
/dev/dsk/c1t1d0 are available for use.

For more information about disks and how they are used and labeled, see Section 4.1.

2. Choose data replication.

ZFS supports multiple types of data replication, which determines what types of hardware failures
the pool can withstand. ZFS supports nonredundant (striped) configurations, as well as mirroring
and RAID-Z (a variation on RAID-5).

For the storage example used in [?task], basic mirroring of two available disks is used.

For more information about ZFS replication features, see Section 4.2.

How to Create a ZFS Storage Pool

1. Become root or assume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see Section 9.4.

2. Pick a pool name.

The pool name is used to identify the storage pool when you are using the zpool or zfs commands.
Most systems require only a single pool, so you can pick any name that you prefer, provided it
satisfies the naming requirements outlined in Section 1.4.

3. Create the pool.

For example, create a mirrored pool that is named tank.

zpool create tank mirror c1t0d0 c1t1d0

If one or more devices contains another file system or is otherwise in use, the command cannot
create the pool.

For more information about creating storage pools, see Section 4.3.

For more information about how device usage is determined, see Section 4.3.

4. View the results.

You can determine if your pool was successfully created by using the zpool list command.

zpool list
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80G 137K 80G 0% ONLINE -

For more information about viewing pool status, see Section 4.6.

25

2. GETTING STARTED WITH ZFS

2.4 Creating a ZFS File System Hierarchy

After creating a storage pool to store your data, you can create your file system hierarchy. Hierarchies are
simple yet powerful mechanisms for organizing information. They are also very familiar to anyone who
has used a file system.

ZFS allows file systems to be organized into arbitrary hierarchies, where each file system has only a single
parent. The root of the hierarchy is always the pool name. ZFS leverages this hierarchy by supporting
property inheritance so that common properties can be set quickly and easily on entire trees of file systems.
How to Determine Your ZFS File System Hierarchy

1. Pick the file system granularity.

ZFS file systems are the central point of administration. They are lightweight and can be created
easily. A good model to use is a file system per user or project, as this model allows properties,
snapshots, and backups to be controlled on a per-user or per-project basis.

Two ZFS file systems, bonwick and billm, are created in [?task].

For more information on managing file systems, see Chapter 5.

2. Group similar file systems.

ZFS allows file systems to be organized into hierarchies so that similar file systems can be grouped.
This model provides a central point of administration for controlling properties and administering
file systems. Similar file systems should be created under a common name.

For the example in [?task], the two file systems are placed under a file system named home.

3. Choose the file system properties.

Most file system characteristics are controlled by using simple properties. These properties control
a variety of behavior, including where the file systems are mounted, how they are shared, if they use
compression, and if any quotas are in effect.

For the example in [?task], all home directories are mounted at /export/zfs/user, are shared
by using NFS, and with compression enabled. In addition, a quota of 10 Gbytes on bonwick is
enforced.

For more information about properties, see Section 5.2.

How to Create ZFS File Systems

1. Become root or assume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see Section 9.4.

2. Create the desired hierarchy.

In this example, a file system that acts as a container for individual file systems is created.

zfs create tank/home

Next, individual file systems are grouped under the home file system in the pool tank.

3. Set the inherited properties.

After the file system hierarchy is established, set up any properties that should be shared among all
users:

26

2.4. Creating a ZFS File System Hierarchy

zfs set mountpoint=/export/zfs tank/home
zfs set sharenfs=on tank/home
zfs set compression=on tank/home
zfs get compression tank/home
NAME PROPERTY VALUE SOURCE
tank/home compression on local

A new feature is available that enables you to set file system properties when the file system is
created. For example:

zfs create -o mountpoint=/export/zfs -o sharenfs=on -o compression=on tank/home

For more information about properties and property inheritance, see Section 5.2.

4. Create the individual file systems.

Note that the file systems could have been created and then the properties could have been changed
at the home level. All properties can be changed dynamically while file systems are in use.

zfs create tank/home/bonwick
zfs create tank/home/billm

These file systems inherit their property settings from their parent, so they are automatically mounted
at /export/zfs/user and are NFS shared. You do not need to edit the /etc/vfstab or
/etc/dfs/dfstab file.

For more information about creating file systems, see Section 5.1.

For more information about mounting and sharing file systems, see Section 5.5.

5. Set the file system-specific properties.

In this example, user bonwick is assigned a quota of 10 Gbytes. This property places a limit on
the amount of space he can consume, regardless of how much space is available in the pool.

zfs set quota=10G tank/home/bonwick

6. View the results.

View available file system information by using the zfs list command:

zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank 92.0K 67.0G 9.5K /tank
tank/home 24.0K 67.0G 8K /export/zfs
tank/home/billm 8K 67.0G 8K /export/zfs/billm
tank/home/bonwick 8K 10.0G 8K /export/zfs/bonwick

Note that the user bonwick only has 10 Gbytes of space available, while the user billm can use
the full pool (67 Gbytes).

For more information about viewing file system status, see Section 5.3.

For more information about how space is used and calculated, see Section 3.2.

27

Chapter 3

ZFS and Traditional File System Differences

This chapter discusses some significant differences between ZFS and traditional file systems. Under-
standing these key differences can help reduce confusion when using traditional tools to interact with
ZFS.

The following sections are provided in this chapter:

• Section 3.1

• Section 3.2

• Section 3.2

• Section 3.3

• Section 3.4

• Section 3.5

3.1 ZFS File System Granularity

Historically, file systems have been constrained to one device so that the file systems themselves have
been constrained to the size of the device. Creating and re-creating traditional file systems because of size
constraints are time-consuming and sometimes difficult. Traditional volume management products helped
manage this process.

Because ZFS file systems are not constrained to specific devices, they can be created easily and quickly,
similar to the way directories are created. ZFS file systems grow automatically within the space allocated
to the storage pool.

Instead of creating one file system, such as /export/home, to manage many user subdirectories, you
can create one file system per user. In addition, ZFS provides a file system hierarchy so that you can easily
set up and manage many file systems by applying properties that can be inherited by file systems contained
within the hierarchy.

For an example of creating a file system hierarchy, see Section 2.4.

29

3. ZFS AND TRADITIONAL FILE SYSTEM DIFFERENCES

3.2 ZFS Space Accounting

ZFS is based on a concept of pooled storage. Unlike typical file systems, which are mapped to physical
storage, all ZFS file systems in a pool share the available storage in the pool. So, the available space
reported by utilities such as df might change even when the file system is inactive, as other file systems
in the pool consume or release space. Note that the maximum file system size can be limited by using
quotas. For information about quotas, see Section 5.6. Space can be guaranteed to a file system by using
reservations. For information about reservations, see Section 5.6. This model is very similar to the NFS
model, where multiple directories are mounted from the same file system (consider /home).

All metadata in ZFS is allocated dynamically. Most other file systems pre-allocate much of their metadata.
As a result, an immediate space cost at file system creation for this metadata is required. This behavior
also means that the total number of files supported by the file systems is predetermined. Because ZFS
allocates its metadata as it needs it, no initial space cost is required, and the number of files is limited only
by the available space. The output from the df -g command must be interpreted differently for ZFS than
other file systems. The total files reported is only an estimate based on the amount of storage that
is available in the pool.

ZFS is a transactional file system. Most file system modifications are bundled into transaction groups
and committed to disk asynchronously. Until these modifications are committed to disk, they are termed
pending changes. The amount of space used, available, and referenced by a file or file system does not
consider pending changes. Pending changes are generally accounted for within a few seconds. Even
committing a change to disk by using fsync(3C) or O_SYNC does not necessarily guarantee that the space
usage information is updated immediately.

Out of Space Behavior

File system snapshots are inexpensive and easy to create in ZFS. Most likely, snapshots will be common
in most ZFS environments. For information about ZFS snapshots, see Chapter 6.

The presence of snapshots can cause some unexpected behavior when you attempt to free space. Typically,
given appropriate permissions, you can remove a file from a full file system, and this action results in
more space becoming available in the file system. However, if the file to be removed exists in a snapshot
of the file system, then no space is gained from the file deletion. The blocks used by the file continue to be
referenced from the snapshot.

As a result, the file deletion can consume more disk space, because a new version of the directory needs to
be created to reflect the new state of the namespace. This behavior means that you can get an unexpected
ENOSPC or EDQUOT when attempting to remove a file.

3.3 Mounting ZFS File Systems

ZFS is designed to reduce complexity and ease administration. For example, with existing file systems
you must edit the /etc/vfstab file every time you add a new file system. ZFS has eliminated this
requirement by automatically mounting and unmounting file systems according to the properties of the
dataset. You do not need to manage ZFS entries in the /etc/vfstab file.

For more information about mounting and sharing ZFS file systems, see Section 5.5.

30

3.4. Traditional Volume Management

3.4 Traditional Volume Management

As described in Section 1.2, ZFS eliminates the need for a separate volume manager. ZFS operates on
raw devices, so it is possible to create a storage pool comprised of logical volumes, either software or
hardware. This configuration is not recommended, as ZFS works best when it uses raw physical devices.
Using logical volumes might sacrifice performance, reliability, or both, and should be avoided.

3.5 The NFSv4 ACL Model

Older versions of Solaris supported an ACL implementation that was primarily based on the POSIX-draft
specification. The POSIX-draft based ACLs are used to protect UFS files, while a new ACL model based
on the NFSv4 specification is used to protect ZFS files.

The main differences of this ACL model are:

• Based on the NFSv4 specification and are similar to NT-style ACLs.

• Much more granular set of access privileges.

• Set and displayed with the chmod and ls commands rather than the setfacl and getfacl commands.

• Richer inheritance semantics for designating how access privileges are applied from directory to
subdirectories, and so on.

For more information about using ACLs with ZFS files, see Chapter 7.

31

Chapter 4

Managing ZFS Storage Pools

This chapter describes how to create and administer ZFS storage pools.

The following sections are provided in this chapter:

• Section 4.1

• Section 4.3

• Section 4.4

• Section 4.5

• Section 4.6

• Section 4.7

• Section 4.7

4.1 Components of a ZFS Storage Pool

The following sections provide detailed information about the following storage pool components:

• Section 4.1

• Section 4.1

• Section 4.1

Using Disks in a ZFS Storage Pool

The most basic element of a storage pool is a piece of physical storage. Physical storage can be any block
device of at least 128 Mbytes in size. Typically, this device is a hard drive that is visible to the system in
the /dev/dsk directory.

A storage device can be a whole disk (c1t0d0) or an individual slice (c0t0d0s7). The recommended
mode of operation is to use an entire disk, in which case the disk does not need to be specially formatted.
ZFS formats the disk using an EFI label to contain a single, large slice. When used in this way, the partition
table that is displayed by the format command appears similar to the following:

33

4. MANAGING ZFS STORAGE POOLS

Current partition table (original):
Total disk sectors available: 71670953 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector
0 usr wm 34 34.18GB 71670953
1 unassigned wm 0 0 0
2 unassigned wm 0 0 0
3 unassigned wm 0 0 0
4 unassigned wm 0 0 0
5 unassigned wm 0 0 0
6 unassigned wm 0 0 0
7 unassigned wm 0 0 0
8 reserved wm 71670954 8.00MB 71687337

To use whole disks, the disks must be named using the standard Solaris convention, such as /dev/dsk/
cXtXdXsX. Some third-party drivers use a different naming convention or place disks in a location other
than the /dev/dsk directory. To use these disks, you must manually label the disk and provide a slice to
ZFS.

ZFS applies an EFI label when you create a storage pool with whole disks. Disks can be labeled with a
traditional Solaris VTOC label when you create a storage pool with a disk slice.

Slices should only be used under the following conditions:

• The device name is nonstandard.

• A single disk is shared between ZFS and another file system, such as UFS.

• A disk is used as a swap or a dump device.

Disks can be specified by using either the full path, such as /dev/dsk/c1t0d0, or a shorthand name
that consists of the device name within the /dev/dsk directory, such as c1t0d0. For example, the
following are valid disk names:

• c1t0d0

• /dev/dsk/c1t0d0

• c0t0d6s2

• /dev/foo/disk

Using whole physical disks is the simplest way to create ZFS storage pools. ZFS configurations become
progressively more complex, from management, reliability, and performance perspectives, when you
build pools from disk slices, LUNs in hardware RAID arrays, or volumes presented by software-based
volume managers. The following considerations might help you determine how to configure ZFS with
other hardware or software storage solutions:

• If you construct ZFS configurations on top of LUNs from hardware RAID arrays, you need to understand
the relationship between ZFS redundancy features and the redundancy features offered by the array.
Certain configurations might provide adequate redundancy and performance, but other configurations
might not.

34

4.2. Replication Features of a ZFS Storage Pool

• You can construct logical devices for ZFS using volumes presented by software-based volume managers,
such as Solaris™ Volume Manager (SVM) or Veritas Volume Manager (VxVM). However, these
configurations are not recommended. While ZFS functions properly on such devices, less-than-optimal
performance might be the result.

For additional information about storage pool recommendations, see the ZFS best practices guide.

Disks are identified both by their path and by their device ID, if available. This method allows devices
to be reconfigured on a system without having to update any ZFS state. If a disk is switched between
controller 1 and controller 2, ZFS uses the device ID to detect that the disk has moved and should now
be accessed using controller 2. The device ID is unique to the drive’s firmware. While unlikely, some
firmware updates have been known to change device IDs. If this situation happens, ZFS can still access
the device by path and update the stored device ID automatically. If you inadvertently change both the
path and the ID of the device, then export and re-import the pool in order to use it.

Using Files in a ZFS Storage Pool

ZFS also allows you to use UFS files as virtual devices in your storage pool. This feature is aimed primarily
at testing and enabling simple experimentation, not for production use. The reason is that any use of files
relies on the underlying file system for consistency. If you create a ZFS pool backed by files on a UFS
file system, then you are implicitly relying on UFS to guarantee correctness and synchronous semantics.

However, files can be quite useful when you are first trying out ZFS or experimenting with more com-
plicated layouts when not enough physical devices are present. All files must be specified as complete
paths and must be at least 64 Mbytes in size. If a file is moved or renamed, the pool must be exported and
re-imported in order to use it, as no device ID is associated with files by which they can be located.

Identifying Virtual Devices in a Storage Pool

Each storage pool is comprised of one or more virtual devices. A virtual device is an internal representation
of the storage pool that describes the layout of physical storage and its fault characteristics. As such, a
virtual device represents the disk devices or files that are used to create the storage pool.

Two top-level virtual devices provide data redundancy: mirror and RAID-Z virtual devices. These virtual
devices consist of disks, disk slices, or files.

Disks, disk slices, or files that are used in pools outside of mirrors and RAID-Z virtual devices, function
as top-level virtual devices themselves.

Storage pools typically contain multiple top-level virtual devices. ZFS dynamically stripes data among all
of the top-level virtual devices in a pool.

4.2 Replication Features of a ZFS Storage Pool

ZFS provides data redundancy, as well as self-healing properties, in a mirrored and a RAID-Z configuration.

• Section 4.2

• Section 4.2

• Section 4.2

• Section 4.2

35

4. MANAGING ZFS STORAGE POOLS

Mirrored Storage Pool Configuration

A mirrored storage pool configuration requires at least two disks, preferably on separate controllers. Many
disks can be used in a mirrored configuration. In addition, you can create more than one mirror in each
pool. Conceptually, a simple mirrored configuration would look similar to the following:
mirror c1t0d0 c2t0d0

Conceptually, a more complex mirrored configuration would look similar to the following:
mirror c1t0d0 c2t0d0 c3t0d0 mirror c4t0d0 c5t0d0 c6t0d0

For information about creating a mirrored storage pool, see Section 4.3.

RAID-Z Storage Pool Configuration

In addition to a mirrored storage pool configuration, ZFS provides a RAID-Z configuration with either
single or double parity fault tolerance. Single-parity RAID-Z is similar to RAID-5. Double-parity RAID-Z
is similar to RAID-6.

All traditional RAID-5-like algorithms (RAID-4. RAID-5. RAID-6, RDP, and EVEN-ODD, for example)
suffer from a problem known as the “RAID-5 write hole.” If only part of a RAID-5 stripe is written,
and power is lost before all blocks have made it to disk, the parity will remain out of sync with the data,
and therefore useless, forever (unless a subsequent full-stripe write overwrites it). In RAID-Z, ZFS uses
variable-width RAID stripes so that all writes are full-stripe writes. This design is only possible because
ZFS integrates file system and device management in such a way that the file system’s metadata has
enough information about the underlying data redundancy model to handle variable-width RAID stripes.
RAID-Z is the world’s first software-only solution to the RAID-5 write hole.

You need at least two disks for a RAID-Z configuration. Otherwise, no special hardware is required to
create a RAID-Z configuration. Currently, RAID-Z provides single parity. For example, if you have three
disks in a RAID-Z configuration, parity data occupies space equal to one of the three disks.

A RAID-Z configuration with N disks of size X with P parity disks can hold approximately (N-P)*X bytes
and can withstand P device(s) failing before data integrity is compromised. You need at least two disks for a
single-parity RAID-Z configuration and at least three disks for a double-parity RAID-Z configuration. For
example, if you have three disks in a single-parity RAID-Z configuration, parity data occupies space equal
to one of the three disks. Otherwise, no special hardware is required to create a RAID-Z configuration.

Conceptually, a RAID-Z configuration with three disks would look similar to the following:
raidz c1t0d0 c2t0d0 c3t0d0

A more complex conceptual RAID-Z configuration would look similar to the following:
raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 c5t0d0 c6t0d0 c7t0d0 raidz c8t0d0 c9t0d0 c10t0d0 c11t0d0
c12t0d0 c13t0d0 c14t0d0

If you are creating a RAID-Z configuration with many disks, as in this example, a RAID-Z configuration
with 14 disks is better split into a two 7-disk groupings. RAID-Z configurations with single-digit groupings
of disks should perform better.

For information about creating a RAID-Z storage pool, see Section 4.3.

For more information about choosing between a mirrored configuration or a RAID-Z configuration based
on performance and space considerations, see the blog post, When To (And Not To) Use RAID-Z. For
additional information on RAID-Z storage pool recommendations, see the ZFS best practices guide.

36

4.3. Creating and Destroying ZFS Storage Pools

Self-Healing Data in a Redundant Configuration

ZFS provides for self-healing data in a mirrored or RAID-Z configuration.

When a bad data block is detected, not only does ZFS fetch the correct data from another redundant copy,
but it also repairs the bad data by replacing it with the good copy.

Dynamic Striping in a Storage Pool

For each virtual device that is added to the pool, ZFS dynamically stripes data across all available devices.
The decision about where to place data is done at write time, so no fixed width stripes are created at
allocation time.

When virtual devices are added to a pool, ZFS gradually allocates data to the new device in order to
maintain performance and space allocation policies. Each virtual device can also be a mirror or a RAID-Z
device that contains other disk devices or files. This configuration allows for flexibility in controlling the
fault characteristics of your pool. For example, you could create the following configurations out of 4
disks:

• Four disks using dynamic striping

• One four-way RAID-Z configuration

• Two two-way mirrors using dynamic striping

While ZFS supports combining different types of virtual devices within the same pool, this practice is
not recommended. For example, you can create a pool with a two-way mirror and a three-way RAID-Z
configuration. However, your fault tolerance is as good as your worst virtual device, RAID-Z in this case.
The recommended practice is to use top-level virtual devices of the same type with the same redundancy
level in each device.

4.3 Creating and Destroying ZFS Storage Pools

The following sections describe different scenarios for creating and destroying ZFS storage pools.

• Section 4.3

• Section 4.3

• Section 4.3

By design, creating and destroying pools is fast and easy. However, be cautious when doing these operations.
Although checks are performed to prevent using devices known to be in use in a new pool, ZFS cannot
always know when a device is already in use. Destroying a pool is even easier. Use zpool destroy with
caution. This is a simple command with significant consequences.

Creating a ZFS Storage Pool

To create a storage pool, use the zpool create command. This command takes a pool name and any
number of virtual devices as arguments. The pool name must satisfy the naming conventions outlined in
Section 1.4.

37

4. MANAGING ZFS STORAGE POOLS

Creating a Basic Storage Pool

The following command creates a new pool named tank that consists of the disks c1t0d0 and c1t1d0:

zpool create tank c1t0d0 c1t1d0

These whole disks are found in the /dev/dsk directory and are labelled appropriately by ZFS to contain
a single, large slice. Data is dynamically striped across both disks.

Creating a Mirrored Storage Pool

To create a mirrored pool, use the mirror keyword, followed by any number of storage devices that
will comprise the mirror. Multiple mirrors can be specified by repeating the mirror keyword on the
command line. The following command creates a pool with two, two-way mirrors:

zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The second mirror keyword indicates that a new top-level virtual device is being specified. Data is
dynamically striped across both mirrors, with data being redundant between each disk appropriately.

Currently, the following operations are supported on a ZFS mirrored configuration:

• Adding another set of disks for an additional top-level vdev to an existing mirrored configuration. For
more information, see Section 4.4.

• Attaching additional disks to an existing mirrored configuration. Or, attaching additional disks to a
non-replicated configuration to create a mirrored configuration. For more information, see Section 4.4.

• Replace a disk or disks in an existing mirrored configuration as long as the replacement disks are greater
than or equal to the device to be replaced. For more information, see Section 4.4.

• Detach a disk or disk in a mirrored configuration as long as the remaining devices provide adequate
redundancy for the configuration. For more information, see Section 4.4.

Currently, the following operations are not supported on a mirrored configuration:

• You cannot outright remove a device from a mirrored storage pool. An RFE is filed for this feature.

• You cannot split or break a mirror for backup purposes. An RFE is filed for this feature.

Creating RAID-Z Storage Pools

Creating a single-parity RAID-Z pool is identical to creating a mirrored pool, except that the raidz or
raidz1 keyword is used instead of mirror. The following example shows how to create a pool with a
single RAID-Z device that consists of five disks:

zpool create tank raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 /dev/dsk/c5t0d0

This example demonstrates that disks can be specified by using their full paths. The /dev/dsk/c5t0d0
device is identical to the c5t0d0 device.

A similar configuration could be created with disk slices. For example:

38

4.3. Creating and Destroying ZFS Storage Pools

zpool create tank raidz c1t0d0s0 c2t0d0s0 c3t0d0s0 c4t0d0s0 c5t0d0s0

However, the disks must be preformatted to have an appropriately sized slice zero.

You can create a double-parity RAID-Z configuration by using the raidz2 keyword when the pool is
created. For example:

zpool create tank raidz2 c1t0d0 c2t0d0 c3t0d0
zpool status -v tank

pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
raidz2 ONLINE 0 0 0
c1t0d0 ONLINE 0 0 0
c2t0d0 ONLINE 0 0 0
c3t0d0 ONLINE 0 0 0

errors: No known data errors

Currently, the following operations are supported on a ZFS RAID-Z configuration:

• Add another set of disks for an additional top-level vdev to an existing RAID-Z configuration. For
more information, see Section 4.4.

• Replace a disk or disks in an existing RAID-Z configuration as long as the replacement disks are greater
than or equal to the device to be replaced. For more information, see Section 4.4.

Currently, the following operations are not supported on a RAID-Z configuration:

• Attach an additional disk to an existing RAID-Z configuration.

• Detach a disk from a RAID-Z configuration.

• You cannot outright remove a device from a RAID-Z configuration. An RFE is filed for this feature.

For more information about a RAID-Z configuration, see Section 4.2.

Creating a ZFS Storage Pool with Log Devices

By default, the ZIL is allocated from blocks within the main pool. However, better performance might be
possible by using separate intent log devices, such as NVRAM or a dedicated disk. For more information
about ZFS log devices, see Section 1.1.

You can set up a ZFS logging device when the storage pool is created or after the pool is created.

For example, create a mirrored storage pool with mirrored log devices.

39

4. MANAGING ZFS STORAGE POOLS

zpool create datap mirror c1t1d0 c1t2d0 mirror c1t3d0 c1t4d0 log mirror c1t5d0 c1t8d0
zpool status

pool: datap
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
datap ONLINE 0 0 0

mirror ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0
c1t2d0 ONLINE 0 0 0

mirror ONLINE 0 0 0
c1t3d0 ONLINE 0 0 0
c1t4d0 ONLINE 0 0 0

logs ONLINE 0 0 0
mirror ONLINE 0 0 0

c1t5d0 ONLINE 0 0 0
c1t8d0 ONLINE 0 0 0

errors: No known data errors

Creating a ZFS Storage Pool with Cache Devices

You can create a storage pool with cache devices to cache storage pool data. For example:

zpool create tank mirror c2t0d0 c2t1d0 c2t3d0 cache c2t5d0 c2t8d0
zpool status tank

pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror ONLINE 0 0 0
c2t0d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0
c2t3d0 ONLINE 0 0 0

cache
c2t5d0 ONLINE 0 0 0
c2t8d0 ONLINE 0 0 0

Review the following points when considering whether to create a ZFS storage pool with cache devices:

• Using cache devices provide the greatest performance improvement for random read-workloads of
mostly static content.

• Capacity and reads can be monitored by using the zpool iostat command.

• Single or multiple cache devices can be added when the pool is created or added and removed after the
pool is created. For more information, see Example 4.3.

• Cache devices cannot be mirrored or be part of a RAID-Z configuration.

40

4.3. Creating and Destroying ZFS Storage Pools

• If a read error is encountered on a cache device, that read I/O is reissued to the original storage pool
device, which might be part of a mirrored or RAID-Z configuration. The content of the cache devices is
considered volatile, as is the case with other system caches.

Handling ZFS Storage Pool Creation Errors

Pool creation errors can occur for many reasons. Some of these reasons are obvious, such as when a
specified device doesn’t exist, while other reasons are more subtle.

Detecting in Use Devices

Before formatting a device, ZFS first determines if the disk is in use by ZFS or some other part of the
operating system. If the disk is in use, you might see errors such as the following:

zpool create tank c1t0d0 c1t1d0
invalid vdev specification
use ’-f’ to override the following errors:
/dev/dsk/c1t0d0s0 is currently mounted on /. Please see umount(1M).
/dev/dsk/c1t0d0s1 is currently mounted on swap. Please see swap(1M).
/dev/dsk/c1t1d0s0 is part of active ZFS pool zeepool. Please see zpool(1M).

Some of these errors can be overridden by using the -f option, but most errors cannot. The following
uses cannot be overridden by using the -f option, and you must manually correct them:

Mounted file system
The disk or one of its slices contains a file system that is currently mounted. To correct this error,
use the umount command.

File system in /etc/vfstab
The disk contains a file system that is listed in the /etc/vfstab file, but the file system is not
currently mounted. To correct this error, remove or comment out the line in the /etc/vfstab
file.

Dedicated dump device
The disk is in use as the dedicated dump device for the system. To correct this error, use the
dumpadm command.

Part of a ZFS pool
The disk or file is part of an active ZFS storage pool. To correct this error, use the zpool command
to destroy the pool.

The following in-use checks serve as helpful warnings and can be overridden by using the -f option to
create the pool:

Contains a file system
The disk contains a known file system, though it is not mounted and doesn’t appear to be in use.

Part of volume
The disk is part of an SVM volume.

41

4. MANAGING ZFS STORAGE POOLS

Live upgrade
The disk is in use as an alternate boot environment for Solaris Live Upgrade.

Part of exported ZFS pool
The disk is part of a storage pool that has been exported or manually removed from a system. In the
latter case, the pool is reported as potentially active, as the disk might or might not be a
network-attached drive in use by another system. Be cautious when overriding a potentially active
pool.

The following example demonstrates how the -f option is used:

zpool create tank c1t0d0
invalid vdev specification
use ’-f’ to override the following errors:
/dev/dsk/c1t0d0s0 contains a ufs filesystem.
zpool create -f tank c1t0d0

Ideally, correct the errors rather than use the -f option.

Mismatched Replication Levels

Creating pools with virtual devices of different replication levels is not recommended. The zpool command
tries to prevent you from accidentally creating a pool with mismatched levels of redundancy. If you try to
create a pool with such a configuration, you see errors similar to the following:

zpool create tank c1t0d0 mirror c2t0d0 c3t0d0
invalid vdev specification
use ’-f’ to override the following errors:
mismatched replication level: both disk and mirror vdevs are present
zpool create tank mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0 c5t0d0
invalid vdev specification
use ’-f’ to override the following errors:
mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

You can override these errors with the -f option, though this practice is not recommended. The command
also warns you about creating a mirrored or RAID-Z pool using devices of different sizes. While this
configuration is allowed, mismatched levels of redundancy result in unused space on the larger device,
and requires the -f option to override the warning.

Doing a Dry Run of Storage Pool Creation

Because creating a pool can fail unexpectedly in different ways, and because formatting disks is such
a potentially harmful action, the zpool create command has an additional option, -n, which simulates
creating the pool without actually writing data to disk. This option performs the device in-use checking
and replication level validation, and reports any errors in the process. If no errors are found, you see output
similar to the following:

zpool create -n tank mirror c1t0d0 c1t1d0
would create ’tank’ with the following layout:

tank
mirror

c1t0d0
c1t1d0

42

4.3. Creating and Destroying ZFS Storage Pools

Some errors cannot be detected without actually creating the pool. The most common example is specifying
the same device twice in the same configuration. This error cannot be reliably detected without writing the
data itself, so the create -n command can report success and yet fail to create the pool when run for real.

Default Mount Point for Storage Pools

When a pool is created, the default mount point for the root dataset is /pool-name. This directory must
either not exist or be empty. If the directory does not exist, it is automatically created. If the directory is
empty, the root dataset is mounted on top of the existing directory. To create a pool with a different default
mount point, use the -m option of the zpool create command:

zpool create home c1t0d0
default mountpoint ’/home’ exists and is not empty
use ’-m’ option to specify a different default
zpool create -m /export/zfs home c1t0d0

zpool create home c1t0d0
default mountpoint ’/home’ exists and is not empty
use ’-m’ option to provide a different default
zpool create -m /export/zfs home c1t0d0

This command creates a new pool home and the home dataset with a mount point of /export/zfs.

For more information about mount points, see Section 5.5.

Destroying ZFS Storage Pools

Pools are destroyed by using the zpool destroy command. This command destroys the pool even if it
contains mounted datasets.

zpool destroy tank

Caution
Be very careful when you destroy a pool. Make sure you are destroying the right pool and you
always have copies of your data. If you accidentally destroy the wrong pool, you can attempt to
recover the pool. For more information, see Section 4.7.

Destroying a Pool With Faulted Devices

The act of destroying a pool requires that data be written to disk to indicate that the pool is no longer valid.
This state information prevents the devices from showing up as a potential pool when you perform an
import. If one or more devices are unavailable, the pool can still be destroyed. However, the necessary
state information won’t be written to these damaged devices.

These devices, when suitably repaired, are reported as potentially active when you create a new pool, and
appear as valid devices when you search for pools to import. If a pool has enough faulted devices such
that the pool itself is faulted (meaning that a top-level virtual device is faulted), then the command prints a
warning and cannot complete without the -f option. This option is necessary because the pool cannot be
opened, so whether data is stored there or not is unknown. For example:

43

4. MANAGING ZFS STORAGE POOLS

zpool destroy tank
cannot destroy ’tank’: pool is faulted
use ’-f’ to force destruction anyway
zpool destroy -f tank

For more information about pool and device health, see Section 4.6.

For more information about importing pools, see Section 4.7.

4.4 Managing Devices in ZFS Storage Pools

Most of the basic information regarding devices is covered in Section 4.1. Once a pool has been created,
you can perform several tasks to manage the physical devices within the pool.

• Section 4.4

• Section 4.4

• Section 4.4

• Section 4.4

• Section 4.4

• Section 4.4

Adding Devices to a Storage Pool

You can dynamically add space to a pool by adding a new top-level virtual device. This space is immediately
available to all datasets within the pool. To add a new virtual device to a pool, use the zpool add command.
For example:

zpool add zeepool mirror c2t1d0 c2t2d0

The format of the virtual devices is the same as for the zpool create command, and the same rules
apply. Devices are checked to determine if they are in use, and the command cannot change the level of
redundancy without the -f option. The command also supports the -n option so that you can perform a
dry run. For example:

zpool add -n zeepool mirror c3t1d0 c3t2d0
would update ’zeepool’ to the following configuration:

zeepool
mirror

c1t0d0
c1t1d0

mirror
c2t1d0
c2t2d0

mirror
c3t1d0
c3t2d0

44

4.4. Managing Devices in ZFS Storage Pools

This command syntax would add mirrored devices c3t1d0 and c3t2d0 to zeepool’s existing config-
uration.

For more information about how virtual device validation is done, see Section 4.3.

Example 4.1: Adding Disks to a RAID-Z Configuration

Additional disks can be added similarly to a RAID-Z configuration. The following example shows how to
convert a storage pool with one RAID–Z device comprised of 3 disks to a storage pool with two RAID-Z
devices comprised of 3 disks.

zpool status
pool: rpool

state: ONLINE
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
raidz1 ONLINE 0 0 0
c1t2d0 ONLINE 0 0 0
c1t3d0 ONLINE 0 0 0
c1t4d0 ONLINE 0 0 0

errors: No known data errors
zpool add rpool raidz c2t2d0 c2t3d0 c2t4d0
zpool status

pool: rpool
state: ONLINE
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
rpool ONLINE 0 0 0
raidz1 ONLINE 0 0 0
c1t2d0 ONLINE 0 0 0
c1t3d0 ONLINE 0 0 0
c1t4d0 ONLINE 0 0 0

raidz1 ONLINE 0 0 0
c2t2d0 ONLINE 0 0 0
c2t3d0 ONLINE 0 0 0
c2t4d0 ONLINE 0 0 0

errors: No known data errors

Example 4.2: Adding a Mirrored Log Device to a ZFS Storage Pool

The following example shows how to add a mirrored log device to mirrored storage pool. For more
information about using log devices in your storage pool, see Section 1.1.

zpool status newpool
pool: newpool

state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
newpool ONLINE 0 0 0
mirror ONLINE 0 0 0

45

4. MANAGING ZFS STORAGE POOLS

c1t9d0 ONLINE 0 0 0
c1t10d0 ONLINE 0 0 0

errors: No known data errors
zpool add newpool log mirror c1t11d0 c1t12d0
zpool status newpool

pool: newpool
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
newpool ONLINE 0 0 0

mirror ONLINE 0 0 0
c1t9d0 ONLINE 0 0 0
c1t10d0 ONLINE 0 0 0

logs ONLINE 0 0 0
mirror ONLINE 0 0 0

c1t11d0 ONLINE 0 0 0
c1t12d0 ONLINE 0 0 0

errors: No known data errors

You can attach a log device to an existing log device to create a mirrored log device. This operation is
identical to attaching a device in a unmirrored storage pool.

Example 4.3: Adding and Removing Cache Devices to Your ZFS Storage Pool

You can add and remove cache devices to your ZFS storage pool.
Use the zpool add command to add cache devices. For example:

zpool add tank cache c2t5d0 c2t8d0
zpool status tank

pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror ONLINE 0 0 0
c2t0d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0
c2t3d0 ONLINE 0 0 0

cache
c2t5d0 ONLINE 0 0 0
c2t8d0 ONLINE 0 0 0

errors: No known data errors

Cache devices cannot be mirrored or be part of a RAID-Z configuration.
Use the zpool remove command to remove cache devices. For example:

E zpool remove tank c2t5d0 c2t8d0
zpool status tank

pool: tank
state: ONLINE
scrub: none requested

config:

46

4.4. Managing Devices in ZFS Storage Pools

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror ONLINE 0 0 0
c2t0d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0
c2t3d0 ONLINE 0 0 0

errors: No known data errors

Currently, the zpool remove command only supports removing hot spares and cache devices. Devices that
are part of the main mirrored pool configuration can be removed by using the zpool detach command.
Non-redundant and RAID-Z devices cannot be removed from a pool.
For more information about using cache devices in a ZFS storage pool, see Section 4.3.

Attaching and Detaching Devices in a Storage Pool

In addition to the zpool add command, you can use the zpool attach command to add a new device to an
existing mirrored or non-mirrored device.

Example 4.4: Converting a Two-Way Mirrored Storage Pool to a Three-way Mirrored Storage Pool

In this example, zeepool is an existing two-way mirror that is transformed to a three-way mirror by
attaching c2t1d0, the new device, to the existing device, c1t1d0.

zpool status
pool: zeepool

state: ONLINE
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0
c0t1d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0

errors: No known data errors
zpool attach zeepool c1t1d0 c2t1d0
zpool status

pool: zeepool
state: ONLINE
scrub: resilver completed with 0 errors on Fri Jan 12 14:47:36 2007

config:

NAME STATE READ WRITE CKSUM
zeepool ONLINE 0 0 0
mirror ONLINE 0 0 0
c0t1d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0

If the existing device is part of a two-way mirror, attaching the new device, creates a three-way mirror,
and so on. In either case, the new device begins to resilver immediately.

Example 4.5: Converting a Non-Redundant ZFS Storage Pool to a Mirrored ZFS Storage Pool

47

4. MANAGING ZFS STORAGE POOLS

In addition, you can convert a non-redundant storage pool into a redundant storage pool by using the zpool
attach command. For example:
zpool create tank c0t1d0
zpool status

pool: tank
state: ONLINE
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

errors: No known data errors
zpool attach tank c0t1d0 c1t1d0
zpool status

pool: tank
state: ONLINE
scrub: resilver completed with 0 errors on Fri Jan 12 14:55:48 2007

config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror ONLINE 0 0 0
c0t1d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0

You can use the zpool detach command to detach a device from a mirrored storage pool. For example:
zpool detach zeepool c2t1d0

However, this operation is refused if there are no other valid replicas of the data. For example:
zpool detach newpool c1t2d0
cannot detach c1t2d0: only applicable to mirror and replacing vdevs

Onlining and Offlining Devices in a Storage Pool

ZFS allows individual devices to be taken offline or brought online. When hardware is unreliable or not
functioning properly, ZFS continues to read or write data to the device, assuming the condition is only
temporary. If the condition is not temporary, it is possible to instruct ZFS to ignore the device by bringing
it offline. ZFS does not send any requests to an offlined device.

Note
Devices do not need to be taken offline in order to replace them.

You can use the offline command when you need to temporarily disconnect storage. For example, if you
need to physically disconnect an array from one set of Fibre Channel switches and connect the array to a
different set, you could take the LUNs offline from the array that was used in ZFS storage pools. After the
array was reconnected and operational on the new set of switches, you could then bring the same LUNs
online. Data that had been added to the storage pools while the LUNs were offline would resilver to the
LUNs after they were brought back online.

This scenario is possible assuming that the systems in question see the storage once it is attached to the
new switches, possibly through different controllers than before, and your pools are set up as RAID-Z or
mirrored configurations.

48

4.4. Managing Devices in ZFS Storage Pools

Taking a Device Offline

You can take a device offline by using the zpool offline command. The device can be specified by path or
by short name, if the device is a disk. For example:

zpool offline tank c1t0d0
bringing device c1t0d0 offline

Keep the following points in mind when taking a device offline:

• You cannot take a pool offline to the point where it becomes faulted. For example, you cannot take
offline two devices out of a RAID-Z configuration, nor can you take offline a top-level virtual device.

zpool offline tank c1t0d0
cannot offline c1t0d0: no valid replicas

• By default, the offline state is persistent. The device remains offline when the system is rebooted.

To temporarily take a device offline, use the zpool offline -t option. For example:

zpool offline -t tank c1t0d0
bringing device ’c1t0d0’ offline

When the system is rebooted, this device is automatically returned to the ONLINE state.

• When a device is taken offline, it is not detached from the storage pool. If you attempt to use the offlined
device in another pool, even after the original pool is destroyed, you will see a message similar to the
following:

device is part of exported or potentially active ZFS pool. Please see zpool(1M)

If you want to use the offlined device in another storage pool after destroying the original storage pool,
first bring the device back online, then destroy the original storage pool.

Another way to use a device from another storage pool if you want to keep the original storage pool is to
replace the existing device in the original storage pool with another comparable device. For information
about replacing devices, see Section 4.4.

Offlined devices show up in the OFFLINE state when you query pool status. For information about
querying pool status, see Section 4.6.

For more information on device health, see Section 4.6.

Bringing a Device Online

Once a device is taken offline, it can be restored by using the zpool online command:

zpool online tank c1t0d0
bringing device c1t0d0 online

When a device is brought online, any data that has been written to the pool is resynchronized to the newly
available device. Note that you cannot use device onlining to replace a disk. If you offline a device, replace
the drive, and try to bring it online, it remains in the faulted state.

If you attempt to online a faulted device, a message similar to the following is displayed from fmd:

49

4. MANAGING ZFS STORAGE POOLS

zpool online tank c1t0d0
Bringing device c1t0d0 online
#
SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Thu Aug 31 11:13:59 MDT 2006
PLATFORM: SUNW,Ultra-60, CSN: -, HOSTNAME: neo
SOURCE: zfs-diagnosis, REV: 1.0
EVENT-ID: e11d8245-d76a-e152-80c6-e63763ed7e4f
DESC: A ZFS device failed. Refer to http://illumos.org/msg/ZFS-8000-D3 for more information.
AUTO-RESPONSE: No automated response will occur.
IMPACT: Fault tolerance of the pool may be compromised.
REC-ACTION: Run ’zpool status -x’ and replace the bad device.

For more information on replacing a faulted device, see Section 10.5.

Clearing Storage Pool Devices

If a device is taken offline due to a failure that causes errors to be listed in the zpool status output, you
can clear the error counts with the zpool clear command.

If specified with no arguments, this command clears all device errors within the pool. For example:

zpool clear tank

If one or more devices are specified, this command only clear errors associated with the specified devices.
For example:

zpool clear tank c1t0d0

For more information on clearing zpool errors, see Section 10.6.

Replacing Devices in a Storage Pool

You can replace a device in a storage pool by using the zpool replace command.

If you are physically replacing a device with another device in the same location in a redundant pool, then
you only need identify the replaced device. ZFS recognizes that it is a different disk in the same location.
For example, to replace a failed disk (c1t1d0) by removing the disk and replacing it in the same location,
use the syntax similar to the following:

zpool replace tank c1t1d0

If you are replacing a device in a non-redundant storage pool that contains only one device, you will need
to specify both devices. For example:

zpool replace tank c1t1d0 c1t2d0

Keep the following considerations in mind when replacing devices in a ZFS storage pool:

• The replacement device must be greater than or equal to the minimum size of all the devices in a
mirrored or RAID-Z configuration.

• If the replacement device is larger, the pool capacity is increased when the replacement is complete.
Currently, you must export and import the pool to see the expanded capacity. For example:

50

4.4. Managing Devices in ZFS Storage Pools

zpool list tank
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 16.8G 94K 16.7G 0% ONLINE -
zpool replace tank c0t0d0 c0t4d0
zpool list tank
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 16.8G 112K 16.7G 0% ONLINE -
zpool export tank
zpool import tank
zpool list tank
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 33.9G 114K 33.9G 0% ONLINE -

For more information about exporting and importing pools, see Section 4.7.

• Currently, you must also perform the export and import steps when growing the size of an existing LUN
that is part of a storage pool to see the expanded capacity.

• Replacing many disks in a large pool is time consuming due to resilvering the data onto the new disks.
In addition, you might consider running the zpool scrub command between disk replacements to ensure
that the replacement devices are operational and the data is written correctly.

For more information about replacing devices, see Section 10.5 and Section 10.6.

Designating Hot Spares in Your Storage Pool

The hot spares feature enables you to identify disks that could be used to replace a failed or faulted device
in one or more storage pools. Designating a device as a hot spare means that the device is not an active
device in a pool, but if an active device in the pool fails, the hot spare automatically replaces the failed
device.

Devices can be designated as hot spares in the following ways:

• When the pool is created with the zpool create command

• After the pool is created with the zpool add command

• Hot spare devices can be shared between multiple pools

Designate devices as hot spares when the pool is created. For example:

zpool create zeepool mirror c1t1d0 c2t1d0 spare c1t2d0 c2t2d0
zpool status zeepool
pool: zeepool
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
zeepool ONLINE 0 0 0
mirror ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0

spares
c1t2d0 AVAIL
c2t2d0 AVAIL

51

4. MANAGING ZFS STORAGE POOLS

Designate hot spares by adding them to a pool after the pool is created. For example:

zpool add -f zeepool spare c1t3d0 c2t3d0
zpool status zeepool
pool: zeepool
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0

spares
c1t3d0 AVAIL
c2t3d0 AVAIL

Multiple pools can share devices that are designated as hot spares. For example:

zpool create zeepool mirror c1t1d0 c2t1d0 spare c1t2d0 c2t2d0
zpool create tank raidz c3t1d0 c4t1d0 spare c1t2d0 c2t2d0

Hot spares can be removed from a storage pool by using the zpool remove command. For example:

zpool remove zeepool c1t2d0
zpool status zeepool
pool: zeepool
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0

spares
c1t3d0 AVAIL

A hot spare cannot be removed if it is currently used by the storage pool.

Keep the following points in mind when using ZFS hot spares:

• Currently, the zpool remove command can only be used to remove hot spares.

• Add a disk as a spare that is equal to or larger than the size of the largest disk in the pool. Adding a
smaller disk as a spare to a pool is allowed. However, when the smaller spare disk is activated, either
automatically or with the zpool replace command, the operation fails with an error similar to the
following:

cannot replace disk3 with disk4: device is too small

Activating and Deactivating Hot Spares in Your Storage Pool

Hot spares are activated in the following ways:

52

4.4. Managing Devices in ZFS Storage Pools

• Manually replacement – Replace a failed device in a storage pool with a hot spare by using the zpool
replace command.

• Automatic replacement – When a fault is received, an FMA agent examines the pool to see if it has any
available hot spares. If so, it replaces the faulted device with an available spare.

If a hot spare that is currently in use fails, the agent detaches the spare and thereby cancels the replace-
ment. The agent then attempts to replace the device with another hot spare, if one is available. This
feature is currently limited by the fact that the ZFS diagnosis engine only emits faults when a device
disappears from the system.

Currently, no automated response is available to bring the original device back online. You must
explicitly take one of the actions described in the example below. A future enhancement will allow ZFS
to subscribe to hotplug events and automatically replace the affected device when it is replaced on the
system.

Manually replace a device with a hot spare by using the zpool replace command. For example:

zpool replace zeepool c2t1d0 c2t3d0
zpool status zeepool

pool: zeepool
state: ONLINE
scrub: resilver completed with 0 errors on Fri Jun 2 13:44:40 2006

config:

NAME STATE READ WRITE CKSUM
zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0
c1t2d0 ONLINE 0 0 0
spare ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0
c2t3d0 ONLINE 0 0 0

spares
c1t3d0 AVAIL
c2t3d0 INUSE currently in use

errors: No known data errors

A faulted device is automatically replaced if a hot spare is available. For example:

zpool status -x
pool: zeepool

state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using ’zpool online’.

see: http://illumos.org/msg/ZFS-8000-D3
scrub: resilver completed with 0 errors on Fri Jun 2 13:56:49 2006

config:

NAME STATE READ WRITE CKSUM
zeepool DEGRADED 0 0 0

mirror DEGRADED 0 0 0
c1t2d0 ONLINE 0 0 0
spare DEGRADED 0 0 0
c2t1d0 UNAVAIL 0 0 0 cannot open
c2t3d0 ONLINE 0 0 0

spares
c1t3d0 AVAIL

53

4. MANAGING ZFS STORAGE POOLS

c2t3d0 INUSE currently in use

errors: No known data errors

Currently, three ways to deactivate hot spares are available:

• Canceling the hot spare by removing it from the storage pool

• Replacing the original device with a hot spare

• Permanently swapping in the hot spare

After the faulted device is replaced, use the zpool detach command to return the hot spare back to the
spare set. For example:

zpool detach zeepool c2t3d0
zpool status zeepool

pool: zeepool
state: ONLINE
scrub: resilver completed with 0 errors on Fri Jun 2 13:58:35 2006

config:

NAME STATE READ WRITE CKSUM
zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0
c1t2d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0

spares
c1t3d0 AVAIL
c2t3d0 AVAIL

errors: No known data errors

4.5 Managing ZFS Storage Pool Properties

You can use the zpool get command to display pool property information. For example:

zpool get all tank2
NAME PROPERTY VALUE SOURCE
tank2 size 33.8G -
tank2 used 158K -
tank2 available 33.7G -
tank2 capacity 0% -
tank2 altroot - default
tank2 health ONLINE -
tank2 guid 8032621780930948264 -
tank2 version 8 default
tank2 bootfs - default
tank2 delegation on default
tank2 autoreplace off default
tank2 temporary off default
tank2 failmode wait default

Storage pool properties can be set with the zpool set command. For example:

54

4.5. Managing ZFS Storage Pool Properties

zpool set autoreplace=on tank
zpool get autoreplace tank
NAME PROPERTY VALUE SOURCE
tank autoreplace on default

Table 4.1: ZFS Pool Property Descriptions

Property
Name Type Default

Value Description

altroot String off

Identifies an alternate root directory. If set, this
directory is prepended to any mount points within the
pool. This property can be used when examining an
unknown pool, if the mount points cannot be trusted,
or in an alternate boot environment, where the typical
paths are not valid. Setting this property implies that
the temporary property is also set.

available Number N/A

Read-only value that identifies the amount of storage
that is available within the pool.
This property can also be referred to by its shortened
column name, avail.

autorepl
ace

Boolean off

Controls automatic device replacement. If set to off,
device replacement must be initiated by the
administrator by using the zpool replace command.
If set to on, any new device, found in the same
physical location as a device that previously belonged
to the pool, is automatically formatted and replaced.
The default behavior is off. This property can also be
referred to by its shortened column name, replace.

bootfs Boolean N/A
Identifies the default bootable dataset for the root
pool. This property is expected to be set mainly by the
installation and upgrade programs.

capacity Number N/A

Read-only value that identifies the percentage of pool
space used.
This property can also be referred to by its shortened
column name, cap.

delegation Boolean on
Controls whether a non-privileged user can be granted
access permissions that are defined for the dataset.
For more information, see Chapter 8.

guid String N/A
Read-only property that identifies the unique
identifier for the pool.

health String N/A
Read-only property that identifies the current health
of the pool, as either ONLINE, DEGRADED,
FAULTED, OFFLINE, REMOVED, or UNAVAIL.

size Number N/A
Read-only property that identifies the total size of the
storage pool.

used Number N/A
Read-only property that identifies the amount of
storage space used within the pool.

55

4. MANAGING ZFS STORAGE POOLS

Table 4.1: (continued)

Property
Name Type Default

Value Description

temporary Boolean off

Controls whether the pool is available temporarily. By
default, all pools are persistent, and are automatically
opened when the system is rebooted. Setting this
property to on causes the pool to exist only while the
system is up. If the system is rebooted, the pool has to
be manually imported by using the zpool import
command. Setting this property is helpful when using
pools on removable media, where the devices might
not be present when the system reboots.
This property can also be referred to by its shortened
column name, temp.

version Number N/A

Identifies the current on-disk version of the pool. The
value of this property can be increased, but never
decreased. The preferred method of updating pools is
with the zpool upgrade command, although this
property can be used when a specific version is
needed for backwards compatibility. This property
can be set to any number between 1 and the current
version reported by the zpool upgrade -v command.
The current value is an alias for the latest
supported version.

4.6 Querying ZFS Storage Pool Status

The zpool list command provides a number of ways to request information regarding pool status. The
information available generally falls into three categories: basic usage information, I/O statistics, and
health status. All three types of storage pool information are covered in this section.

• Section 4.6

• Section 4.6

• Section 4.6

Displaying Basic ZFS Storage Pool Information

You can use the zpool list command to display basic information about pools.

Listing Information About All Storage Pools

With no arguments, the command displays all the fields for all pools on the system. For example:

56

4.6. Querying ZFS Storage Pool Status

zpool list
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80.0G 22.3G 47.7G 28% ONLINE -
dozer 1.2T 384G 816G 32% ONLINE -

This output displays the following information:

NAME
The name of the pool.

SIZE
The total size of the pool, equal to the sum of the size of all top-level virtual devices.

USED
The amount of space allocated by all datasets and internal metadata. Note that this amount is
different from the amount of space as reported at the file system level.

For more information about determining available file system space, see Section 3.2.

AVAILABLE
The amount of unallocated space in the pool.

CAPACITY (CAP)
The amount of space used, expressed as a percentage of total space.

HEALTH
The current health status of the pool.

For more information about pool health, see Section 4.6.

ALTROOT
The alternate root of the pool, if any.

For more information about alternate root pools, see Section 9.3.

You can also gather statistics for a specific pool by specifying the pool name. For example:

zpool list tank
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80.0G 22.3G 47.7G 28% ONLINE -

Listing Specific Storage Pool Statistics

Specific statistics can be requested by using the -o option. This option allows for custom reports or a
quick way to list pertinent information. For example, to list only the name and size of each pool, you use
the following syntax:

zpool list -o name,size
NAME SIZE
tank 80.0G
dozer 1.2T

The column names correspond to the properties that are listed in Section 4.6.

57

4. MANAGING ZFS STORAGE POOLS

Scripting ZFS Storage Pool Output

The default output for the zpool list command is designed for readability, and is not easy to use as part
of a shell script. To aid programmatic uses of the command, the -H option can be used to suppress the
column headings and separate fields by tabs, rather than by spaces. For example, to request a simple list of
all pool names on the system:

zpool list -Ho name
tank
dozer

Here is another example:

zpool list -H -o name,size
tank 80.0G
dozer 1.2T

Viewing ZFS Storage Pool I/O Statistics

To request I/O statistics for a pool or specific virtual devices, use the zpool iostat command. Similar to the
iostat command, this command can display a static snapshot of all I/O activity so far, as well as updated
statistics for every specified interval. The following statistics are reported:

USED CAPACITY
The amount of data currently stored in the pool or device. This figure differs from the amount of
space available to actual file systems by a small amount due to internal implementation details.

For more information about the difference between pool space and dataset space, see Section 3.2.

AVAILABLE CAPACITY
The amount of space available in the pool or device. As with the used statistic, this amount differs
from the amount of space available to datasets by a small margin.

READ OPERATIONS
The number of read I/O operations sent to the pool or device, including metadata requests.

WRITE OPERATIONS
The number of write I/O operations sent to the pool or device.

READ BANDWIDTH
The bandwidth of all read operations (including metadata), expressed as units per second.

WRITE BANDWIDTH
The bandwidth of all write operations, expressed as units per second.

Listing Pool-Wide Statistics

With no options, the zpool iostat command displays the accumulated statistics since boot for all pools on
the system. For example:

58

4.6. Querying ZFS Storage Pool Status

zpool iostat
capacity operations bandwidth

pool used avail read write read write
---------- ----- ----- ----- ----- ----- -----
tank 100G 20.0G 1.2M 102K 1.2M 3.45K
dozer 12.3G 67.7G 132K 15.2K 32.1K 1.20K

Because these statistics are cumulative since boot, bandwidth might appear low if the pool is relatively idle.
You can request a more accurate view of current bandwidth usage by specifying an interval. For example:
zpool iostat tank 2

capacity operations bandwidth
pool used avail read write read write
---------- ----- ----- ----- ----- ----- -----
tank 100G 20.0G 1.2M 102K 1.2M 3.45K
tank 100G 20.0G 134 0 1.34K 0
tank 100G 20.0G 94 342 1.06K 4.1M

In this example, the command displays usage statistics only for the pool tank every two seconds until
you type Ctrl-C. Alternately, you can specify an additional count parameter, which causes the command
to terminate after the specified number of iterations. For example, zpool iostat 2 3 would print a summary
every two seconds for three iterations, for a total of six seconds. If there is a single pool, then the statistics
are displayed on consecutive lines. If more than one pool exists, then an additional dashed line delineates
each iteration to provide visual separation.

Listing Virtual Device Statistics

In addition to pool-wide I/O statistics, the zpool iostat command can display statistics for specific virtual
devices. This command can be used to identify abnormally slow devices, or simply to observe the
distribution of I/O generated by ZFS. To request the complete virtual device layout as well as all I/O
statistics, use the zpool iostat -v command. For example:
zpool iostat -v

capacity operations bandwidth
tank used avail read write read write
---------- ----- ----- ----- ----- ----- -----
mirror 20.4G 59.6G 0 22 0 6.00K

c1t0d0 - - 1 295 11.2K 148K
c1t1d0 - - 1 299 11.2K 148K

---------- ----- ----- ----- ----- ----- -----
total 24.5K 149M 0 22 0 6.00K

Note two important things when viewing I/O statistics on a virtual device basis.

• First, space usage is only available for top-level virtual devices. The way in which space is allocated
among mirror and RAID-Z virtual devices is particular to the implementation and not easily expressed
as a single number.

• Second, the numbers might not add up exactly as you would expect them to. In particular, operations
across RAID-Z and mirrored devices will not be exactly equal. This difference is particularly noticeable
immediately after a pool is created, as a significant amount of I/O is done directly to the disks as part of
pool creation that is not accounted for at the mirror level. Over time, these numbers should gradually
equalize, although broken, unresponsive, or offlined devices can affect this symmetry as well.

You can use the same set of options (interval and count) when examining virtual device statistics.

59

4. MANAGING ZFS STORAGE POOLS

Determining the Health Status of ZFS Storage Pools

ZFS provides an integrated method of examining pool and device health. The health of a pool is determined
from the state of all its devices. This state information is displayed by using the zpool status command. In
addition, potential pool and device failures are reported by fmd and are displayed on the system console
and the /var/adm/messages file. This section describes how to determine pool and device health. This
chapter does not document how to repair or recover from unhealthy pools. For more information on
troubleshooting and data recovery, see Chapter 10.

Each device can fall into one of the following states:

ONLINE
The device is in normal working order. While some transient errors might still occur, the device is
otherwise in working order.

DEGRADED
The virtual device has experienced failure but is still able to function. This state is most common
when a mirror or RAID-Z device has lost one or more constituent devices. The fault tolerance of the
pool might be compromised, as a subsequent fault in another device might be unrecoverable.

FAULTED
The virtual device is completely inaccessible. This status typically indicates total failure of the
device, such that ZFS is incapable of sending or receiving data from it. If a top-level virtual device
is in this state, then the pool is completely inaccessible.

OFFLINE
The virtual device has been explicitly taken offline by the administrator.

UNAVAILABLE
The device or virtual device cannot be opened. In some cases, pools with UNAVAILABLE devices
appear in DEGRADED mode. If a top-level virtual device is unavailable, then nothing in the pool
can be accessed.

REMOVED
The device was physically removed while the system was running. Device removal detection is
hardware-dependent and might not be supported on all platforms.

The health of a pool is determined from the health of all its top-level virtual devices. If all virtual
devices are ONLINE, then the pool is also ONLINE. If any one of the virtual devices is DEGRADED or
UNAVAILABLE, then the pool is also DEGRADED. If a top-level virtual device is FAULTED or OFFLINE,
then the pool is also FAULTED. A pool in the faulted state is completely inaccessible. No data can be
recovered until the necessary devices are attached or repaired. A pool in the degraded state continues to
run, but you might not achieve the same level of data redundancy or data throughput than if the pool were
online.

Basic Storage Pool Health Status

The simplest way to request a quick overview of pool health status is to use the zpool status command:

zpool status -x
all pools are healthy

60

4.6. Querying ZFS Storage Pool Status

Specific pools can be examined by specifying a pool name to the command. Any pool that is not in the
ONLINE state should be investigated for potential problems, as described in the next section.

Detailed Health Status

You can request a more detailed health summary by using the -v option. For example:

zpool status -v tank
pool: tank

state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist

for the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using ’zpool online’.

see: http://illumos.org/msg/ZFS-8000-2Q
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0
c1t0d0 FAULTED 0 0 0 cannot open
c1t1d0 ONLINE 0 0 0

errors: No known data errors

This output displays a complete description of why the pool is in its current state, including a readable
description of the problem and a link to a knowledge article for more information. Each knowledge article
provides up-to-date information on the best way to recover from your current problem. Using the detailed
configuration information, you should be able to determine which device is damaged and how to repair
the pool.

In the above example, the faulted device should be replaced. After the device is replaced, use the zpool
online command to bring the device back online. For example:

zpool online tank c1t0d0
Bringing device c1t0d0 online
zpool status -x
all pools are healthy

If a pool has an offlined device, the command output identifies the problem pool. For example:

zpool status -x
pool: tank

state: DEGRADED
status: One or more devices has been taken offline by the adminstrator.

Sufficient replicas exist for the pool to continue functioning in a
degraded state.

action: Online the device using ’zpool online’ or replace the device with
’zpool replace’.

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0
c1t0d0 ONLINE 0 0 0
c1t1d0 OFFLINE 0 0 0

errors: No known data errors

61

4. MANAGING ZFS STORAGE POOLS

The READ and WRITE columns provides a count of I/O errors seen on the device, while the CKSUM
column provides a count of uncorrectable checksum errors that occurred on the device. Both of these error
counts likely indicate potential device failure, and some corrective action is needed. If non-zero errors are
reported for a top-level virtual device, portions of your data might have become inaccessible. The errors
count identifies any known data errors.

In the example output above, the offlined device is not causing data errors.

For more information about diagnosing and repairing faulted pools and data, see Chapter 10.

4.7 Migrating ZFS Storage Pools

Occasionally, you might need to move a storage pool between machines. To do so, the storage devices
must be disconnected from the original machine and reconnected to the destination machine. This task
can be accomplished by physically recabling the devices, or by using multiported devices such as the
devices on a SAN. ZFS enables you to export the pool from one machine and import it on the destination
machine, even if the machines are of different endianness. For information about replicating or migrating
file systems between different storage pools, which might reside on different machines, see Section 6.3.

• Section 4.7

• Section 4.7

• Section 4.7

• Section 4.7

• Section 4.7

• Section 4.7

• Section 4.7

Preparing for ZFS Storage Pool Migration

Storage pools should be explicitly exported to indicate that they are ready to be migrated. This operation
flushes any unwritten data to disk, writes data to the disk indicating that the export was done, and removes
all knowledge of the pool from the system.

If you do not explicitly export the pool, but instead remove the disks manually, you can still import the
resulting pool on another system. However, you might lose the last few seconds of data transactions, and
the pool will appear faulted on the original machine because the devices are no longer present. By default,
the destination machine refuses to import a pool that has not been explicitly exported. This condition is
necessary to prevent accidentally importing an active pool that consists of network attached storage that is
still in use on another system.

62

4.7. Migrating ZFS Storage Pools

Exporting a ZFS Storage Pool

To export a pool, use the zpool export command. For example:

zpool export tank

Once this command is executed, the pool tank is no longer visible on the system. The command attempts
to unmount any mounted file systems within the pool before continuing. If any of the file systems fail to
unmount, you can forcefully unmount them by using the -f option. For example:

zpool export tank
cannot unmount ’/export/home/eschrock’: Device busy
zpool export -f tank

If devices are unavailable at the time of export, the disks cannot be specified as cleanly exported. If one of
these devices is later attached to a system without any of the working devices, it appears as “potentially
active.” If ZFS volumes are in use in the pool, the pool cannot be exported, even with the -f option. To
export a pool with an ZFS volume, first make sure that all consumers of the volume are no longer active.

For more information about ZFS volumes, see Section 9.1.

Determining Available Storage Pools to Import

Once the pool has been removed from the system (either through export or by forcefully removing the
devices), attach the devices to the target system. Although ZFS can handle some situations in which only
a portion of the devices is available, all devices within the pool must be moved between the systems. The
devices do not necessarily have to be attached under the same device name. ZFS detects any moved or
renamed devices, and adjusts the configuration appropriately. To discover available pools, run the zpool
import command with no options. For example:

zpool import
pool: tank

id: 3778921145927357706
state: ONLINE

action: The pool can be imported using its name or numeric identifier.
config:

tank ONLINE
mirror ONLINE
c1t0d0 ONLINE
c1t1d0 ONLINE

In this example, the pool tank is available to be imported on the target system. Each pool is identified by
a name as well as a unique numeric identifier. If multiple pools available to import have the same name,
you can use the numeric identifier to distinguish between them.

Similar to the zpool status command, the zpool import command refers to a knowledge article available
on the web with the most up-to-date information regarding repair procedures for a problem that is
preventing a pool from being imported. In this case, the user can force the pool to be imported. However,
importing a pool that is currently in use by another system over a storage network can result in data
corruption and panics as both systems attempt to write to the same storage. If some devices in the pool are
not available but enough redundancy is available to have a usable pool, the pool appears in the DEGRADED
state. For example:

63

4. MANAGING ZFS STORAGE POOLS

zpool import
pool: tank

id: 3778921145927357706
state: DEGRADED

status: One or more devices are missing from the system.
action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported.
see: http://illumos.org/msg/ZFS-8000-2Q

config:

tank DEGRADED
mirror DEGRADED
c1t0d0 UNAVAIL cannot open
c1t1d0 ONLINE

In this example, the first disk is damaged or missing, though you can still import the pool because the
mirrored data is still accessible. If too many faulted or missing devices are present, the pool cannot be
imported. For example:

zpool import
pool: dozer

id: 12090808386336829175
state: FAULTED

action: The pool cannot be imported. Attach the missing
devices and try again.

see: http://illumos.org/msg/ZFS-8000-6X
config:

raidz FAULTED
c1t0d0 ONLINE
c1t1d0 FAULTED
c1t2d0 ONLINE
c1t3d0 FAULTED

In this example, two disks are missing from a RAID-Z virtual device, which means that sufficient redundant
data is not available to reconstruct the pool. In some cases, not enough devices are present to determine the
complete configuration. In this case, ZFS doesn’t know what other devices were part of the pool, though
ZFS does report as much information as possible about the situation. For example:

zpool import
pool: dozer

id: 12090808386336829175
state: FAULTED

status: One or more devices are missing from the system.
action: The pool cannot be imported. Attach the missing

devices and try again.
see: http://illumos.org/msg/ZFS-8000-6X

config:
dozer FAULTED missing device

raidz ONLINE
c1t0d0 ONLINE
c1t1d0 ONLINE
c1t2d0 ONLINE
c1t3d0 ONLINE

Additional devices are known to be part of this pool, though their
exact configuration cannot be determined.

64

4.7. Migrating ZFS Storage Pools

Finding ZFS Storage Pools From Alternate Directories

By default, the zpool import command only searches devices within the /dev/dsk directory. If devices
exist in another directory, or you are using pools backed by files, you must use the -d option to search
different directories. For example:
zpool create dozer mirror /file/a /file/b
zpool export dozer
zpool import -d /file

pool: dozer
id: 10952414725867935582

state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

dozer ONLINE
mirror ONLINE
/file/a ONLINE
/file/b ONLINE

zpool import -d /file dozer

If devices exist in multiple directories, you can specify multiple -d options.

Importing ZFS Storage Pools

Once a pool has been identified for import, you can import it by specifying the name of the pool or its
numeric identifier as an argument to the zpool import command. For example:
zpool import tank

If multiple available pools have the same name, you can specify which pool to import using the numeric
identifier. For example:
zpool import

pool: dozer
id: 2704475622193776801

state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

dozer ONLINE
c1t9d0 ONLINE

pool: dozer
id: 6223921996155991199

state: ONLINE
action: The pool can be imported using its name or numeric identifier.
config:

dozer ONLINE
c1t8d0 ONLINE

zpool import dozer
cannot import ’dozer’: more than one matching pool
import by numeric ID instead
zpool import 6223921996155991199

If the pool name conflicts with an existing pool name, you can import the pool under a different name. For
example:

65

4. MANAGING ZFS STORAGE POOLS

zpool import dozer zeepool

This command imports the exported pool dozer using the new name zeepool. If the pool was not
cleanly exported, ZFS requires the -f flag to prevent users from accidentally importing a pool that is still
in use on another system. For example:

zpool import dozer
cannot import ’dozer’: pool may be in use on another system
use ’-f’ to import anyway
zpool import -f dozer

Pools can also be imported under an alternate root by using the -R option. For more information on
alternate root pools, see Section 9.3.

Recovering Destroyed ZFS Storage Pools

You can use the zpool import -D command to recover a storage pool that has been destroyed. For example:

zpool destroy tank
zpool import -D
pool: tank

id: 3778921145927357706
state: ONLINE (DESTROYED)

action: The pool can be imported using its name or numeric identifier. The
pool was destroyed, but can be imported using the ’-Df’ flags.

config:

tank ONLINE
mirror ONLINE
c1t0d0 ONLINE
c1t1d0 ONLINE

In the above zpool import output, you can identify this pool as the destroyed pool because of the following
state information:

state: ONLINE (DESTROYED)

To recover the destroyed pool, issue the zpool import -D command again with the pool to be recovered
and the -f option. For example:

zpool import -Df tank
zpool status tank

pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror ONLINE 0 0 0
c1t0d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0

errors: No known data errors

66

4.7. Migrating ZFS Storage Pools

If one of the devices in the destroyed pool is faulted or unavailable, you might be able to recover the
destroyed pool anyway. In this scenario, import the degraded pool and then attempt to fix the device failure.
For example:

zpool destroy dozer
zpool import -D
pool: dozer

id:
state: DEGRADED (DESTROYED)

status: One or more devices are missing from the system.
action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported. The
pool was destroyed, but can be imported using the ’-Df’ flags.

see: http://illumos.org/msg/ZFS-8000-2Q
config:

dozer DEGRADED
raidz ONLINE
c1t0d0 ONLINE
c1t1d0 ONLINE
c1t2d0 UNAVAIL cannot open
c1t3d0 ONLINE

zpool import -Df dozer
zpool status -x

pool: dozer
state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for
the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.
see: http://illumos.org/msg/ZFS-8000-D3

scrub: resilver completed with 0 errors on Fri Mar 17 16:11:35 2006
config:

NAME STATE READ WRITE CKSUM
dozer DEGRADED 0 0 0
raidz ONLINE 0 0 0
c1t0d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0
c1t2d0 UNAVAIL 0 0 0 cannot open
c1t3d0 ONLINE 0 0 0

errors: No known data errors
zpool online dozer c1t2d0
Bringing device c1t2d0 online
zpool status -x
all pools are healthy

Upgrading ZFS Storage Pools

If you have ZFS storage pools from an earlier ZFS release, you can upgrade your pools with the zpool
upgrade command to take advantage of any newer pool features. In addition, the zpool status command
has been modified to notify you when your pools are running older versions. For example:

zpool status
pool: test

state: ONLINE
status: The pool is formatted using an older on-disk format. The pool can

still be used, but some features are unavailable.

67

4. MANAGING ZFS STORAGE POOLS

action: Upgrade the pool using ’zpool upgrade’. Once this is done, the
pool will no longer be accessible on older software versions.

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
test ONLINE 0 0 0

c1t27d0 ONLINE 0 0 0

errors: No known data errors

You can use the following syntax to identify additional information about a particular version and supported
releases.

zpool upgrade -v
This system supports ZFS pool feature flags.

The following features are supported:

FEAT DESCRIPTION

async_destroy (read-only compatible)

Destroy filesystems asynchronously.
empty_bpobj (read-only compatible)

Snapshots use less space.
lz4_compress

LZ4 compression algorithm support.
multi_vdev_crash_dump

Crash dumps to multiple vdev pools.
spacemap_histogram (read-only compatible)

Spacemaps maintain space histograms.
enabled_txg (read-only compatible)

Record txg at which a feature is enabled
hole_birth

Retain hole birth txg for more precise zfs send
extensible_dataset

Enhanced dataset functionality, used by other features.
embedded_data

Blocks which compress very well use even less space.
bookmarks (read-only compatible)

"zfs bookmark" command
filesystem_limits (read-only compatible)

Filesystem and snapshot limits.
large_blocks

Support for blocks larger than 128KB.
sha512

SHA-512/256 hash algorithm.
skein

Skein hash algorithm.
edonr

Edon-R hash algorithm.

The following legacy versions are also supported:

VER DESCRIPTION
--- --
1 Initial ZFS version
2 Ditto blocks (replicated metadata)
3 Hot spares and double parity RAID-Z
4 zpool history

68

4.7. Migrating ZFS Storage Pools

5 Compression using the gzip algorithm
6 bootfs pool property
7 Separate intent log devices
8 Delegated administration
9 refquota and refreservation properties
10 Cache devices
11 Improved scrub performance
12 Snapshot properties
13 snapused property
14 passthrough-x aclinherit
15 user/group space accounting
16 stmf property support
17 Triple-parity RAID-Z
18 Snapshot user holds
19 Log device removal
20 Compression using zle (zero-length encoding)
21 Deduplication
22 Received properties
23 Slim ZIL
24 System attributes
25 Improved scrub stats
26 Improved snapshot deletion performance
27 Improved snapshot creation performance
28 Multiple vdev replacements

For more information on a particular version, including supported releases,
see the ZFS Administration Guide.

Then, you can run the zpool upgrade command to upgrade your pools. For example:

zpool upgrade -a

Note
If you upgrade your pools to the latest version, they will not be accessible on systems that run older ZFS
versions.

69

Chapter 5

Managing ZFS File Systems

This chapter provides detailed information about managing ZFS file systems. Concepts such as hierarchical
file system layout, property inheritance, and automatic mount point management and share interactions
are included in this chapter.

A ZFS file system is a lightweight POSIX file system that is built on top of a storage pool. File systems
can be dynamically created and destroyed without requiring you to allocate or format any underlying
space. Because file systems are so lightweight and because they are the central point of administration in
ZFS, you are likely to create many of them.

ZFS file systems are administered by using the zfs command. The zfs command provides a set of
subcommands that perform specific operations on file systems. This chapter describes these subcommands
in detail. Snapshots, volumes, and clones are also managed by using this command, but these features are
only covered briefly in this chapter. For detailed information about snapshots and clones, see Chapter 6.
For detailed information about emulated volumes, see Section 9.1.

Note
The term dataset is used in this chapter as a generic term to refer to a file system, snapshot, clone, or
volume.

The following sections are provided in this chapter:

• Section 5.1

• Section 5.2

• Section 5.3

• Section 5.4

• Section 5.5

• Section 5.6

• Section 6.3

71

5. MANAGING ZFS FILE SYSTEMS

5.1 Creating and Destroying ZFS File Systems

ZFS file systems can be created and destroyed by using the zfs create and zfs destroy commands.

• Section 5.1

• Section 5.1

• Section 5.1

Creating a ZFS File System

ZFS file systems are created by using the zfs create command. The create subcommand takes a single
argument: the name of the file system to create. The file system name is specified as a path name starting
from the name of the pool:

pool-name/[filesystem-name/]filesystem-name

The pool name and initial file system names in the path identify the location in the hierarchy where the
new file system will be created. All the intermediate file system names must already exist in the pool. The
last name in the path identifies the name of the file system to be created. The file system name must satisfy
the naming conventions defined in Section 1.4.

In the following example, a file system named bonwick is created in the tank/home file system.

zfs create tank/home/bonwick

ZFS automatically mounts the newly created file system if it is created successfully. By default, file systems
are mounted as /dataset, using the path provided for the file system name in the create subcommand.
In this example, the newly created bonwick file system is at /tank/home/bonwick. For more
information about automanaged mount points, see Section 5.5.

For more information about the zfs create command, see zfs(1M).

You can set file system properties when the file system is created.

In the following example, a mount point of /export/zfs is specified and is created for the tank/
home file system.

zfs create -o mountpoint=/export/zfs tank/home

For more information about file system properties, see Section 5.2.

Destroying a ZFS File System

To destroy a ZFS file system, use the zfs destroy command. The destroyed file system is automatically
unmounted and unshared. For more information about automatically managed mounts or automatically
managed shares, see Section 5.5.

In the following example, the tabriz file system is destroyed.

zfs destroy tank/home/tabriz

72

5.1. Creating and Destroying ZFS File Systems

Caution
No confirmation prompt appears with the destroy subcommand. Use it with extreme caution.

If the file system to be destroyed is busy and so cannot be unmounted, the zfs destroy command fails. To
destroy an active file system, use the -f option. Use this option with caution as it can unmount, unshare,
and destroy active file systems, causing unexpected application behavior.

zfs destroy tank/home/ahrens
cannot unmount ’tank/home/ahrens’: Device busy

zfs destroy -f tank/home/ahrens

The zfs destroy command also fails if a file system has children. To recursively destroy a file system and
all its descendents, use the -r option. Note that a recursive destroy also destroys snapshots so use this
option with caution.

zfs destroy tank/ws
cannot destroy ’tank/ws’: filesystem has children
use ’-r’ to destroy the following datasets:
tank/ws/billm
tank/ws/bonwick
tank/ws/maybee

zfs destroy -r tank/ws

If the file system to be destroyed has indirect dependents, even the recursive destroy command described
above fails. To force the destruction of all dependents, including cloned file systems outside the target
hierarchy, the -R option must be used. Use extreme caution with this option.

zfs destroy -r tank/home/schrock
cannot destroy ’tank/home/schrock’: filesystem has dependent clones
use ’-R’ to destroy the following datasets:
tank/clones/schrock-clone

zfs destroy -R tank/home/schrock

Caution
No confirmation prompt appears with the -f, -r, or -R options so use these options carefully.

For more information about snapshots and clones, see Chapter 6.

Renaming a ZFS File System

File systems can be renamed by using the zfs rename command. Using the rename subcommand can
perform the following operations:

73

5. MANAGING ZFS FILE SYSTEMS

• Change the name of a file system

• Relocate the file system to a new location within the ZFS hierarchy

• Change the name of a file system and relocate it with the ZFS hierarchy

The following example uses the rename subcommand to do a simple rename of a file system:

zfs rename tank/home/kustarz tank/home/kustarz_old

This example renames the kustarz file system to kustarz_old.

The following example shows how to use zfs rename to relocate a file system.

zfs rename tank/home/maybee tank/ws/maybee

In this example, the maybee file system is relocated from tank/home to tank/ws. When you relocate
a file system through rename, the new location must be within the same pool and it must have enough
space to hold this new file system. If the new location does not have enough space, possibly because it has
reached its quota, the rename will fail.

For more information about quotas, see Section 5.6.

The rename operation attempts an unmount/remount sequence for the file system and any descendent file
systems. The rename fails if the operation is unable to unmount an active file system. If this problem
occurs, you will need to force unmount the file system.

For information about renaming snapshots, see Section 6.1.

5.2 Introducing ZFS Properties

Properties are the main mechanism that you use to control the behavior of file systems, volumes, snapshots,
and clones. Unless stated otherwise, the properties defined in the section apply to all the dataset types.

• Section 5.2

• Section 5.2

• Section 5.2

Properties are divided into two types, native properties and user defined properties. Native properties
either export internal statistics or control ZFS file system behavior. In addition, native properties are
either settable or read-only. User properties have no effect on ZFS file system behavior, but you can use
them to annotate datasets in a way that is meaningful in your environment. For more information on user
properties, see Section 5.2.

Most settable properties are also inheritable. An inheritable property is a property that, when set on a
parent, is propagated down to all of its descendents.

All inheritable properties have an associated source. The source indicates how a property was obtained.
The source of a property can have the following values:

74

5.2. Introducing ZFS Properties

local
A local source indicates that the property was explicitly set on the dataset by using the zfs set
command as described in Section 5.4.

inherited from dataset-name
A value of inherited from dataset-name means that the property was inherited from the
named ancestor.

default
A value of default means that the property setting was not inherited or set locally. This source is
a result of no ancestor having the property as source local.

The following table identifies both read-only and settable native ZFS file system properties. Read-only
native properties are identified as such. All other native properties listed in this table are settable. For
information about user properties, see Section 5.2.

Table 5.1: ZFS Native Property Descriptions

Property
Name Type Default

Value Description

aclinhe
rit

String secure

Controls how ACL entries are inherited when files
and directories are created. The values are discard,
noallow, secure, and passthrough. For a
description of these values, see Section 7.1.

aclmode String
groupm
ask

Controls how an ACL entry is modified during a
chmod operation. The values are discard,
groupmask, and passthrough. For a description
of these values, see Section 7.1.

atime Boolean on

Controls whether the access time for files is updated
when they are read. Turning this property off avoids
producing write traffic when reading files and can
result in significant performance gains, though it
might confuse mailers and other similar utilities.

available Number N/A

Read-only property that identifies the amount of space
available to the dataset and all its children, assuming
no other activity in the pool. Because space is shared
within a pool, available space can be limited by
various factors including physical pool size, quotas,
reservations, or other datasets within the pool.
This property can also be referenced by its shortened
column name, avail.
For more information about space accounting, see
Section 3.2.

canmount Boolean on

Controls whether the given file system can be
mounted with the zfs mount command. This property
can be set on any file system and the property itself is
not inheritable. However, when this property is set, a
mountpoint can be inherited to descendent file
systems, but the file system itself is never mounted.
For more information, see Section 5.2.

75

5. MANAGING ZFS FILE SYSTEMS

Table 5.1: (continued)

Property
Name Type Default

Value Description

casesensi
tivity

String
sensit
ive

This property indicates whether the file name
matching algorithm used by the file system should be
casesensitive, caseinsensitive, or allow
a combination of both styles of matching (mixed).
The default value for this property is sensitive.
Traditionally, UNIX and POSIX file systems have
case-sensitive file names.
The mixed value for this property indicates the file
system can support requests for both case-sensitive
and case-insensitive matching behavior. Currently,
case-insensitive matching behavior on a file system
that supports mixed behavior is limited to the Solaris
CIFS server product. For more information about
using the mixed value, see Section 5.2.
Regardless of the casesensitivity property
setting, the file system preserves the case of the name
specified to create a file. This property cannot be
changed after the file system is created.

checksum String on

Controls the checksum used to verify data integrity.
The default value is on, which automatically selects
an appropriate algorithm, currently fletcher2.
The values are on, off, fletcher2,
fletcher4, and sha256. A value of off disables
integrity checking on user data. A value of off is not
recommended.

compression String off

Controls the compression algorithm used for this
dataset. Currently, you can select lzjb, gzip, or
gzip-N . Enabling compression on a file system with
existing data only compresses new data. Existing data
remains uncompressed.
This property can also be referred to by its shortened
column name, compress.

compressratio Number N/A

Read-only property that identifies the compression
ratio achieved for this dataset, expressed as a
multiplier. Compression can be turned on by running
zfs set compression=on dataset.
Calculated from the logical size of all files and the
amount of referenced physical data. Includes explicit
savings through the use of the compression property.

76

5.2. Introducing ZFS Properties

Table 5.1: (continued)

Property
Name Type Default

Value Description

copies Number 1

Sets the number of copies of user data per file system.
Available values are 1, 2 or 3. These copies are in
addition to any pool-level redundancy. Space used by
multiple copies of user data is charged to the
corresponding file and dataset and counts against
quotas and reservations. In addition, the used property
is updated when multiple copies are enabled.
Consider setting this property when the file system is
created because changing this property on an existing
file system only affects newly written data.

creation Number N/A
Read-only property that identifies the date and time
that this dataset was created.

devices Boolean on
Controls the ability to open device files in the file
system.

exec Boolean on
Controls whether programs within this file system are
allowed to be executed. Also, when set to off,
mmap(2) calls with PROT_EXEC are disallowed.

mounted boolean N/A

Read-only property that indicates whether this file
system, clone, or snapshot is currently mounted. This
property does not apply to volumes. Value can be
either yes or no.

mountpoint String N/A

Controls the mount point used for this file system.
When the mountpoint property is changed for a file
system, the file system and any children that inherit
the mount point are unmounted. If the new value is
legacy, then they remain unmounted. Otherwise,
they are automatically remounted in the new location
if the property was previously legacy or none, or
if they were mounted before the property was
changed. In addition, any shared file systems are
unshared and shared in the new location.
For more information about using this property, see
Section 5.5.

nbmand Boolean off

Controls whether the file system should be mounted
with nbmand (Non-blocking mandatory) locks. This
property is for CIFS clients only. Changes to this
property only take effect when the file system is
unmounted and remounted.

77

5. MANAGING ZFS FILE SYSTEMS

Table 5.1: (continued)

Property
Name Type Default

Value Description

normaliza
tion

String None

This property indicates whether a file system should
perform a unicode normalization of file names
whenever two file names are compared, and which
normalization algorithm should be used. File names
are always stored unmodified, names are normalized
as part of any comparison process. If this property is
set to a legal value other than none, and the
utf8only property was left unspecified, the
utf8only property is automatically set to on. The
default value of the normalization property is
none. This property cannot be changed after the file
system is created.

origin String N/A

Read-only property for cloned file systems or volumes
that identifies the snapshot from which the clone was
created. The origin cannot be destroyed (even with
the -r or -f options) as long as a clone exists.
Non-cloned file systems have an origin of none.

quota
Number
(or none)

none

Limits the amount of space a dataset and its
descendents can consume. This property enforces a
hard limit on the amount of space used, including all
space consumed by descendents, including file
systems and snapshots. Setting a quota on a
descendent of a dataset that already has a quota does
not override the ancestor’s quota, but rather imposes
an additional limit. Quotas cannot be set on volumes,
as the volsize property acts as an implicit quota.
For information about setting quotas, see Section 5.6.

readonly Boolean off

Controls whether this dataset can be modified. When
set to on, no modifications can be made to the dataset.
This property can also be referred to by its shortened
column name, rdonly.

recordsize Number 128K

Specifies a suggested block size for files in the file
system.
This property can also be referred to by its shortened
column name, recsize. For a detailed description, see
Section 5.2.

referenced Number N/A

Read-only property that identifies the amount of data
accessible by this dataset, which might or might not
be shared with other datasets in the pool.
When a snapshot or clone is created, it initially
references the same amount of space as the file
system or snapshot it was created from, because its
contents are identical.
This property can also be referred to by its shortened
column name, refer.

78

5.2. Introducing ZFS Properties

Table 5.1: (continued)

Property
Name Type Default

Value Description

refquota
Number
(or none)

none

Sets the amount of space that a dataset can consume.
This property enforces a hard limit on the amount of
space used. This hard limit does not include space
used by descendents, such as snapshots and clones.

refreserv
ation

Number
(or none)

none

Sets the minimum amount of space that is guaranteed
to a dataset, not including descendents, such as
snapshots and clones. When the amount of space that
is used is below this value, the dataset is treated as if
it were taking up the amount of space specified by
refreservation. The refreservation
reservation is accounted for in the parent datasets’
space used, and counts against the parent datasets’
quotas and reservations.
If refreservation is set, a snapshot is only
allowed if enough free pool space is available outside
of this reservation to accommodate the current
number of referenced bytes in the dataset.
This property can also be referred to by its shortened
column name, refreserv.

reservation
Number
(or none)

none

The minimum amount of space guaranteed to a
dataset and its descendents. When the amount of
space used is below this value, the dataset is treated as
if it were using the amount of space specified by its
reservation. Reservations are accounted for in the
parent datasets’ space used, and count against the
parent datasets’ quotas and reservations.
This property can also be referred to by its shortened
column name, reserv.
For more information, see Section 5.6.

setuid Boolean on
Controls whether the setuid bit is honored in the
file system.

sharenfs String off

Controls whether the file system is available over
NFS, and what options are used. If set to on, the zfs
share command is invoked with no options.
Otherwise, the zfs share command is invoked with
options equivalent to the contents of this property. If
set to off, the file system is managed by using the
legacy share and unshare commands and the
dfstab file.
For more information on sharing ZFS file systems,
see Section 5.5.

79

5. MANAGING ZFS FILE SYSTEMS

Table 5.1: (continued)

Property
Name Type Default

Value Description

sharesmb Boolean off

Controls whether the file system is shared by using
the Solaris CIFS service, and what options are to be
used. A file system with the sharesmb property set
to off is managed through traditional tools, such as
the sharemgr command. Otherwise, the file system is
automatically shared and unshared by using the zfs
share and zfs unshare commands.
If the property is set to on, the sharemgr command
is invoked with no options. Otherwise, the sharemgr
command is invoked with options that are equivalent
to the contents of this property.

snapdir String hidden
Controls whether the .zfs directory is hidden or
visible in the root of the file system. For more
information on using snapshots, see Section 6.1.

type String N/A
Read-only property that identifies the dataset type as
filesystem (file system or clone), volume, or
snapshot.

used Number N/A
Read-only property that identifies the amount of space
consumed by the dataset and all its descendents.
For a detailed description, see Section 5.2.

utf8only Boolean Off

This property indicates whether a file system should
reject file names that include characters that are not
present in the UTF-8 character code set. If this
property is explicitly set to off, the
normalization property must either not be
explicitly set or be set to none. The default value for
the utf8only property is off. This property
cannot be changed after the file system is created.

volsize Number N/A
For volumes, specifies the logical size of the volume.
For a detailed description, see Section 5.2.

volblocks
ize

Number 8 Kbytes

For volumes, specifies the block size of the volume.
The block size cannot be changed once the volume
has been written, so set the block size at volume
creation time. The default block size for volumes is 8
Kbytes. Any power of 2 from 512 bytes to 128
Kbytes is valid.
This property can also be referred to by its shortened
column name, volblock.

vscan Boolean Off

Controls whether regular files should be scanned for
viruses when a file is opened and closed. In addition
to enabling this property, a virus scanning service
must also be enabled for virus scanning to occur. The
default value is off.

80

5.2. Introducing ZFS Properties

Table 5.1: (continued)

Property
Name Type Default

Value Description

zoned Boolean N/A

Indicates whether this dataset has been added to a
non-global zone. If this property is set, then the mount
point is not honored in the global zone, and ZFS
cannot mount such a file system when requested.
When a zone is first installed, this property is set for
any added file systems.
For more information about using ZFS with zones
installed, see Section 9.2.

xattr Boolean on
Indicates whether extended attributes are enabled or
disabled for this file system. The default value is on.

ZFS Read-Only Native Properties

Read-only native properties are properties that can be retrieved but cannot be set. Read-only native
properties are not inherited. Some native properties are specific to a particular type of dataset. In such
cases, the particular dataset type is mentioned in the description in Table 5.1.

The read-only native properties are listed here and are described in Table 5.1.

• available

• creation

• mounted

• origin

• compressratio

• referenced

• type

• used

For detailed information, see Section 5.2.

For more information on space accounting, including the used, referenced, and available properties, see
Section 3.2.

81

5. MANAGING ZFS FILE SYSTEMS

The used Property

The amount of space consumed by this dataset and all its descendents. This value is checked against
the dataset’s quota and reservation. The space used does not include the dataset’s reservation, but does
consider the reservation of any descendent datasets. The amount of space that a dataset consumes from its
parent, as well as the amount of space that is freed if the dataset is recursively destroyed, is the greater of
its space used and its reservation.

When snapshots are created, their space is initially shared between the snapshot and the file system, and
possibly with previous snapshots. As the file system changes, space that was previously shared becomes
unique to the snapshot, and counted in the snapshot’s space used. Additionally, deleting snapshots can
increase the amount of space unique to (and used by) other snapshots. For more information about
snapshots and space issues, see Section 3.2.

The amount of space used, available, or referenced does not take into account pending changes. Pending
changes are generally accounted for within a few seconds. Committing a change to a disk using fsync(3C)
or O_SYNC does not necessarily guarantee that the space usage information will be updated immediately.

Settable ZFS Native Properties

Settable native properties are properties whose values can be both retrieved and set. Settable native
properties are set by using the zfs set command, as described in Section 5.4 or by using the zfs create
command as described in Section 5.1. With the exceptions of quotas and reservations, settable native
properties are inherited. For more information about quotas and reservations, see Section 5.6.

Some settable native properties are specific to a particular type of dataset. In such cases, the particular
dataset type is mentioned in the description in Table 5.1. If not specifically mentioned, a property applies
to all dataset types: file systems, volumes, clones, and snapshots.

The settable properties are listed here and are described in Table 5.1.

• aclinherit

For a detailed description, see Section 7.1.

• aclmode

For a detailed description, see Section 7.1.

• atime

• canmount

• casesensitivity

• checksum

• compression

• copies

• devices

• exec

82

5.2. Introducing ZFS Properties

• mountpoint

• nbmand

• normalization

• quota

• readonly

• recordsize

For a detailed description, see Section 5.2.

• refquota

• refreservation

• reservation

• sharenfs

• sharesmb

• setuid

• snapdir

• vscan

• utf8only

• volsize

For a detailed description,see Section 5.2.

• volblocksize

• zoned

The canmount Property

If this property is set to no, the file system cannot be mounted by using the zfs mount or zfs mount -a
commands. This property is similar to setting the mountpoint property to none, except that the dataset
still has a normal mountpoint property that can be inherited. For example, you can set this property to
no, establish inheritable properties for descendent file systems, but the file system itself is never mounted
nor it is accessible to users. In this case, the parent file system with this property set to no is serving as a
container so that you can set attributes on the container, but the container itself is never accessible.

In the following example, userpool is created and the canmount property is set to off. Mount points for
descendent user file systems are set to one common mount point, /export/home. Properties that are
set on the parent file system are inherited by descendent file systems, but the parent file system itself is
never mounted.

83

5. MANAGING ZFS FILE SYSTEMS

zpool create userpool mirror c0t5d0 c1t6d0
zfs set canmount=off userpool
zfs set mountpoint=/export/home userpool
zfs set compression=on userpool
zfs create userpool/user1
zfs create userpool/user2
zfs list -r userpool
NAME USED AVAIL REFER MOUNTPOINT
userpool 140K 8.24G 24.5K /export/home
userpool/user1 24.5K 8.24G 24.5K /export/home/user1
userpool/user2 24.5K 8.24G 24.5K /export/home/user2

The casesensitivity Property

This property indicates whether the file name matching algorithm used by the file system should be
casesensitive, caseinsensitive, or allow a combination of both styles of matching (mixed).

When a case-insensitive matching request is made of a mixed sensitivity file system, the behavior is
generally the same as would be expected of a purely case-insensitive file system. The difference is that
a mixed sensitivity file system might contain directories with multiple names that are unique from a
case-sensitive perspective, but not unique from the case-insensitive perspective.

For example, a directory might contain files foo, Foo, and FOO. If a request is made to case-insensitively
match any of the possible forms of foo, (for example foo, FOO, FoO, fOo, and so on) one of the three
existing files is chosen as the match by the matching algorithm. Exactly which file the algorithm chooses
as a match is not guaranteed, but what is guaranteed is that the same file is chosen as a match for any
of the forms of foo. The file chosen as a case-insensitive match for foo, FOO, foO, Foo, and so on, is
always the same, so long as the directory remains unchanged.

The utf8only, normalization, and casesensitivity properties are also new permissions that
can be assigned to non-privileged users by using ZFS delegated administration. For more information, see
Section 8.2.

The recordsize Property

Specifies a suggested block size for files in the file system.

This property is designed solely for use with database workloads that access files in fixed-size records.
ZFS automatically adjust block sizes according to internal algorithms optimized for typical access patterns.
For databases that create very large files but access the files in small random chunks, these algorithms
may be suboptimal. Specifying a recordsize greater than or equal to the record size of the database can
result in significant performance gains. Use of this property for general purpose file systems is strongly
discouraged, and may adversely affect performance. The size specified must be a power of two greater
than or equal to 512 and less than or equal to 128 Kbytes. Changing the file system’s recordsize only
affects files created afterward. Existing files are unaffected.

This property can also be referred to by its shortened column name, recsize.

The sharesmb Property

This property enabled sharing of ZFS file systems with the Solaris CIFS service, and identifies options to
be used.

84

5.2. Introducing ZFS Properties

Because SMB shares requires a resource name, a unique resource name is constructed from the dataset
name. The constructed name is a copy of the dataset name except that the characters in the dataset name,
which would be illegal in the resource name, are replaced with underbar (_) characters. A pseudo property
name is also supported that allows you to replace the dataset name with a specific name. The specific
name is then used to replace the prefix dataset in the case of inheritance.

For example, if the dataset, data/home/john, is set to name=john, then data/home/john has
a resource name of john. If a child dataset of data/home/john/backups exists, it has a resource
name of john_backups. When the sharesmb property is changed for a dataset, the dataset and any
children inheriting the property are re-shared with the new options, only if the property was previously set
to off, or if they were shared before the property was changed. If the new property is set to off, the file
systems are unshared.

For examples of using the sharesmb property, see Section 5.5.

The volsize Property

The logical size of the volume. By default, creating a volume establishes a reservation for the same amount.
Any changes to volsize are reflected in an equivalent change to the reservation. These checks are used
to prevent unexpected behavior for users. A volume that contains less space than it claims is available
can result in undefined behavior or data corruption, depending on how the volume is used. These effects
can also occur when the volume size is changed while it is in use, particularly when you shrink the size.
Extreme care should be used when adjusting the volume size.

Though not recommended, you can create a sparse volume by specifying the -s flag to zfs create -V, or
by changing the reservation once the volume has been created. A sparse volume is defined as a volume
where the reservation is not equal to the volume size. For a sparse volume, changes to volsize are not
reflected in the reservation.

For more information about using volumes, see Section 9.1.

ZFS User Properties

In addition to the standard native properties, ZFS supports arbitrary user properties. User properties have
no effect on ZFS behavior, but you can use them to annotate datasets with information that is meaningful
in your environment.

User property names must conform to the following characteristics:

• Contain a colon (’:’) character to distinguish them from native properties.

• Contain lowercase letters, numbers, and the following punctuation characters: ’:’, + ,’.’, ’_’.

• Maximum user property name is 256 characters.

The expected convention is that the property name is divided into the following two components but this
namespace is not enforced by ZFS:

module:property

85

5. MANAGING ZFS FILE SYSTEMS

When making programmatic use of user properties, use a reversed DNS domain name for the module
component of property names to reduce the chance that two independently-developed packages will use
the same property name for different purposes. Property names that begin with "com.sun." are reserved
for use by Sun Microsystems.

The values of user properties have the following characteristics:

• Arbitrary strings that are always inherited and are never validated.

• Maximum user property value is 1024 characters.

For example:
zfs set dept:users=finance userpool/user1
zfs set dept:users=general userpool/user2
zfs set dept:users=itops userpool/user3

All of the commands that operate on properties, such as zfs list, zfs get, zfs set, and so on, can be used to
manipulate both native properties and user properties.

For example:
zfs get -r dept:users userpool
NAME PROPERTY VALUE SOURCE
userpool dept:users all local
userpool/user1 dept:users finance local
userpool/user2 dept:users general local
userpool/user3 dept:users itops local

To clear a user property, use the zfs inherit command. For example:
zfs inherit -r dept:users userpool

If the property is not defined in any parent dataset, it is removed entirely.

5.3 Querying ZFS File System Information

The zfs list command provides an extensible mechanism for viewing and querying dataset information.
Both basic and complex queries are explained in this section.

Listing Basic ZFS Information

You can list basic dataset information by using the zfs list command with no options. This command
displays the names of all datasets on the system including their used, available, referenced, and mountpoint
properties. For more information about these properties, see Section 5.2.

For example:
zfs list
NAME USED AVAIL REFER MOUNTPOINT
pool 476K 16.5G 21K /pool
pool/clone 18K 16.5G 18K /pool/clone
pool/home 296K 16.5G 19K /pool/home
pool/home/marks 277K 16.5G 277K /pool/home/marks
pool/home/marks@snap 0 - 277K -
pool/test 18K 16.5G 18K /test

86

5.3. Querying ZFS File System Information

You can also use this command to display specific datasets by providing the dataset name on the command
line. Additionally, use the -r option to recursively display all descendents of that dataset. For example:

zfs list -r pool/home/marks
NAME USED AVAIL REFER MOUNTPOINT
pool/home/marks 277K 16.5G 277K /pool/home/marks
pool/home/marks@snap 0 - 277K -

You use zfs list command with absolute pathnames for datasets, snapshots, and volumes. For example:

zfs list /pool/home/marks
NAME USED AVAIL REFER MOUNTPOINT
pool/home/marks 277K 16.5G 277K /pool/home/marks

The following example shows how to display tank/home/chua and all of its descendent datasets.

zfs list -r tank/home/chua
NAME USED AVAIL REFER MOUNTPOINT
tank/home/chua 26.0K 4.81G 10.0K /tank/home/chua
tank/home/chua/projects 16K 4.81G 9.0K /tank/home/chua/projects
tank/home/chua/projects/fs1 8K 4.81G 8K /tank/home/chua/projects/fs1
tank/home/chua/projects/fs2 8K 4.81G 8K /tank/home/chua/projects/fs2

For additional information about the zfs list command, see zfs(1M).

Creating Complex ZFS Queries

The zfs list output can be customized by using of the -o, -f, and -H options.

You can customize property value output by using the -o option and a comma-separated list of desired
properties. Supply any dataset property as a valid value. For a list of all supported dataset properties, see
Section 5.2. In addition to the properties defined there, the -o option list can also contain the literal name
to indicate that the output should include the name of the dataset.

The following example uses zfs list to display the dataset name, along with the sharenfs and mountpoint
properties.

zfs list -o name,sharenfs,mountpoint
NAME SHARENFS MOUNTPOINT
tank off /tank
tank/home on /tank/home
tank/home/ahrens on /tank/home/ahrens
tank/home/bonwick on /tank/home/bonwick
tank/home/chua on /tank/home/chua
tank/home/eschrock on legacy
tank/home/moore on /tank/home/moore
tank/home/tabriz ro /tank/home/tabriz

You can use the -t option to specify the types of datasets to display. The valid types are described in the
following table.

87

5. MANAGING ZFS FILE SYSTEMS

Table 5.2: Types of ZFS Datasets

Type Description
filesystem File systems and clones
volume Volumes
snapshot Snapshots

The -t options takes a comma-separated list of the types of datasets to be displayed. The following
example uses the -t and -o options simultaneously to show the name and used property for all file
systems:
zfs list -t filesystem -o name,used
NAME USED
pool 476K
pool/clone 18K
pool/home 296K
pool/home/marks 277K
pool/test 18K

You can use the -H option to omit the zfs list header from the generated output. With the -H option, all
white space is output as tabs. This option can be useful when you need parseable output, for example,
when scripting. The following example shows the output generated from using the zfs list command with
the -H option:
zfs list -H -o name
pool
pool/clone
pool/home
pool/home/marks
pool/home/marks@snap
pool/test

5.4 Managing ZFS Properties

Dataset properties are managed through the zfs command’s set, inherit, and get subcommands.

• Section 5.4

• Section 5.4

• Section 5.4

Setting ZFS Properties

You can use the zfs set command to modify any settable dataset property. Or, you can use the zfs create
command to set properties when the dataset is created. For a list of settable dataset properties, see
Section 5.2. The zfs set command takes a property/value sequence in the format of property=value
and a dataset name.

The following example sets the atime property to off for tank/home. Only one property can be set or
modified during each zfs set invocation.

88

5.4. Managing ZFS Properties

zfs set atime=off tank/home

In addition, any file system property can be set when the file system is created. For example:

zfs create -o atime=off tank/home

You can specify numeric properties by using the following easy to understand suffixes (in order of
magnitude): BKMGTPEZ. Any of these suffixes can be followed by an optional b, indicating bytes, with
the exception of the B suffix, which already indicates bytes. The following four invocations of zfs set are
equivalent numeric expressions indicating that the quota property be set to the value of 50 Gbytes on the
tank/home/marks file system:

zfs set quota=50G tank/home/marks
zfs set quota=50g tank/home/marks
zfs set quota=50GB tank/home/marks
zfs set quota=50gb tank/home/marks

Values of non-numeric properties are case-sensitive and must be lowercase, with the exception of mount-
point and sharenfs. The values of these properties can have mixed upper and lower case letters.

For more information about the zfs set command, see zfs(1M).

Inheriting ZFS Properties

All settable properties, with the exception of quotas and reservations, inherit their value from their parent,
unless a quota or reservation is explicitly set on the child. If no ancestor has an explicit value set for an
inherited property, the default value for the property is used. You can use the zfs inherit command to clear
a property setting, thus causing the setting to be inherited from the parent.

The following example uses the zfs set command to turn on compression for the tank/home/bonwick
file system. Then, zfs inherit is used to unset the compression property, thus causing the property to
inherit the default setting of off. Because neither home nor tank have the compression property set
locally, the default value is used. If both had compression on, the value set in the most immediate ancestor
would be used (home in this example).

zfs set compression=on tank/home/bonwick
zfs get -r compression tank
NAME PROPERTY VALUE SOURCE
tank compression off default
tank/home compression off default
tank/home/bonwick compression on local
zfs inherit compression tank/home/bonwick
zfs get -r compression tank
NAME PROPERTY VALUE SOURCE
tank compression off default
tank/home compression off default
tank/home/bonwick compression off default

The inherit subcommand is applied recursively when the -r option is specified. In the following example,
the command causes the value for the compression property to be inherited by tank/home and any
descendents it might have.

zfs inherit -r compression tank/home

89

5. MANAGING ZFS FILE SYSTEMS

Note
Be aware that the use of the -r option clears the current property setting for all descendent datasets.

For more information about the zfs command, see zfs(1M).

Querying ZFS Properties

The simplest way to query property values is by using the zfs list command. For more information, see
Section 5.3. However, for complicated queries and for scripting, use the zfs get command to provide more
detailed information in a customized format.

You can use the zfs get command to retrieve any dataset property. The following example shows how to
retrieve a single property on a dataset:

zfs get checksum tank/ws
NAME PROPERTY VALUE SOURCE
tank/ws checksum on default

The fourth column, SOURCE, indicates where this property value has been set from. The following table
defines the meaning of the possible source values.

Table 5.3: Possible SOURCE Values (zfs get)

Source Value Description

default
This property was never explicitly set for this dataset or any of
its ancestors. The default value for this property is being used.

inherited from dataset-

name

This property value is being inherited from the parent as
specified by dataset-name.

local
This property value was explicitly set for this dataset by using
zfs set.

temporary

This property value was set by using the zfs mount -o option
and is only valid for the lifetime of the mount. For more
information about temporary mount point properties, see
Section 5.5.

- (none)
This property is a read-only property. Its value is generated by
ZFS.

You can use the special keyword all to retrieve all dataset properties. The following example uses the
all keyword to retrieve all existing dataset properties:

zfs get all tank
NAME PROPERTY VALUE SOURCE
tank type filesystem -
tank creation Wed Jan 23 9:57 2008 -
tank used 120K -
tank available 33.1G -
tank referenced 24.0K -
tank compressratio 1.00x -

90

5.4. Managing ZFS Properties

tank mounted yes -
tank quota none default
tank reservation none default
tank recordsize 128K default
tank mountpoint /tank default
tank sharenfs off default
tank checksum on default
tank compression off default
tank atime on default
tank devices on default
tank exec on default
tank setuid on default
tank readonly off default
tank zoned off default
tank snapdir hidden default
tank aclmode groupmask default
tank aclinherit secure default
tank canmount on default
tank shareiscsi off default
tank xattr on default
tank copies 1 default
tank version 3 -
tank utf8only off -
tank normalization none -
tank casesensitivity sensitive -
tank vscan off default
tank nbmand off default
tank sharesmb off default
tank refquota none default
tank refreservation none default

The -s option to zfs get enables you to specify, by source value, the type of properties to display. This
option takes a comma-separated list indicating the desired source types. Only properties with the specified
source type are displayed. The valid source types are local, default, inherited, temporary,
and none. The following example shows all properties that have been locally set on pool.
zfs get -s local all pool
NAME PROPERTY VALUE SOURCE
pool compression on local

Any of the above options can be combined with the -r option to recursively display the specified properties
on all children of the specified dataset. In the following example, all temporary properties on all datasets
within tank are recursively displayed:
zfs get -r -s temporary all tank
NAME PROPERTY VALUE SOURCE
tank/home atime off temporary
tank/home/bonwick atime off temporary
tank/home/marks atime off temporary

A recent feature enables you to make queries with the zfs get command without specifying a target file
system, which means it operates on all pools or file systems. For example:
zfs get -s local all
tank/home atime off local
tank/home/bonwick atime off local
tank/home/marks quota 50G local

For more information about the zfs get command, see zfs(1M).

91

5. MANAGING ZFS FILE SYSTEMS

Querying ZFS Properties for Scripting

The zfs get command supports the -H and -o options, which are designed for scripting. The -H option
indicates that any header information should be omitted and that all white space should come in the form
of tab. Uniform white space allows for easily parseable data. You can use the -o option to customize
the output. This option takes a comma-separated list of values to be output. All properties defined in
Section 5.2, along with the literals name, value, property and source can be supplied in the -o
list.

The following example shows how to retrieve a single value by using the -H and -o options of zfs get.

zfs get -H -o value compression tank/home
on

The -p option reports numeric values as their exact values. For example, 1 Mbyte would be reported as
1000000. This option can be used as follows:

zfs get -H -o value -p used tank/home
182983742

You can use the -r option along with any of the above options to recursively retrieve the requested values
for all descendents. The following example uses the -r, -o, and -H options to retrieve the dataset name
and the value of the used property for export/home and its descendents, while omitting any header
output:

zfs get -H -o name,value -r used export/home
export/home 5.57G
export/home/marks 1.43G
export/home/maybee 2.15G

5.5 Mounting and Sharing ZFS File Systems

This section describes how mount points and shared file systems are managed in ZFS.

• Section 5.5

• Section 5.5

• Section 5.5

• Section 5.5

• Section 5.5

Managing ZFS Mount Points

By default, all ZFS file systems are mounted by ZFS at boot by using SMF’s svc://system/filesystem/
local service. File systems are mounted under /path, where path is the name of the file system.

You can override the default mount point by setting the mountpoint property to a specific path by using the
zfs set command. ZFS automatically creates this mount point, if needed, and automatically mounts this

92

5.5. Mounting and Sharing ZFS File Systems

file system when the zfs mount -a command is invoked, without requiring you to edit the /etc/vfstab
file.

The mountpoint property is inherited. For example, if pool/home has mountpoint set to /export/
stuff, then pool/home/user inherits /export/stuff/user for its mountpoint property.

The mountpoint property can be set to none to prevent the file system from being mounted. In addition,
the canmount property is available for determining whether a file system can be mounted. For more
information about the canmount property, see Section 5.2.

If desired, file systems can also be explicitly managed through legacy mount interfaces by setting the
mountpoint property to legacy by using zfs set. Doing so prevents ZFS from automatically mounting
and managing this file system. Legacy tools including the mount and umount commands, and the
/etc/vfstab file must be used instead. For more information about legacy mounts, see Section 5.5.

When changing mount point management strategies, the following behaviors apply:

• Automatic mount point behavior

• Legacy mount point behavior

Automatic Mount Points

• When changing from legacy or none, ZFS automatically mounts the file system.

• If ZFS is currently managing the file system but it is currently unmounted, and the mountpoint property
is changed, the file system remains unmounted.

You can also set the default mount point for the root dataset at creation time by using zpool create’s -m
option. For more information about creating pools, see Section 4.3.

Any dataset whose mountpoint property is not legacy is managed by ZFS. In the following example, a
dataset is created whose mount point is automatically managed by ZFS.

zfs create pool/filesystem
zfs get mountpoint pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mountpoint /pool/filesystem default
zfs get mounted pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mounted yes -

You can also explicitly set the mountpoint property as shown in the following example:

zfs set mountpoint=/mnt pool/filesystem
zfs get mountpoint pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mountpoint /mnt local
zfs get mounted pool/filesystem
NAME PROPERTY VALUE SOURCE
pool/filesystem mounted yes -

When the mountpoint property is changed, the file system is automatically unmounted from the old mount
point and remounted to the new mount point. Mount point directories are created as needed. If ZFS is
unable to unmount a file system due to it being active, an error is reported and a forced manual unmount is
necessary.

93

5. MANAGING ZFS FILE SYSTEMS

Legacy Mount Points

You can manage ZFS file systems with legacy tools by setting the mountpoint property to legacy. Legacy
file systems must be managed through the mount and umount commands and the /etc/vfstab file.
ZFS does not automatically mount legacy file systems on boot, and the ZFS mount and umount command
do not operate on datasets of this type. The following examples show how to set up and manage a ZFS
dataset in legacy mode:

zfs set mountpoint=legacy tank/home/eschrock
mount -F zfs tank/home/eschrock /mnt

In addition, you must mount them by creating entries in the /etc/vfstab file. Otherwise, the system/
filesystem/local service enters maintenance mode when the system boots.

To automatically mount a legacy file system on boot, you must add an entry to the /etc/vfstab file.
The following example shows what the entry in the /etc/vfstab file might look like:

#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
#

tank/home/eschrock - /mnt zfs - yes -

Note that the device to fsck and fsck pass entries are set to -. This syntax is because the fsck
command is not applicable to ZFS file systems. For more information regarding data integrity and the lack
of need for fsck in ZFS, see Section 1.2.

Mounting ZFS File Systems

ZFS automatically mounts file systems when file systems are created or when the system boots. Use
of the zfs mount command is necessary only when changing mount options or explicitly mounting or
unmounting file systems.

The zfs mount command with no arguments shows all currently mounted file systems that are managed
by ZFS. Legacy managed mount points are not displayed. For example:

zfs mount
tank /tank
tank/home /tank/home
tank/home/bonwick /tank/home/bonwick
tank/ws /tank/ws

You can use the -a option to mount all ZFS managed file systems. Legacy managed file systems are not
mounted. For example:

zfs mount -a

By default, ZFS does not allow mounting on top of a nonempty directory. To force a mount on top of a
nonempty directory, you must use the -O option. For example:

zfs mount tank/home/lalt
cannot mount ’/export/home/lalt’: directory is not empty
use legacy mountpoint to allow this behavior, or use the -O flag
zfs mount -O tank/home/lalt

94

5.5. Mounting and Sharing ZFS File Systems

Legacy mount points must be managed through legacy tools. An attempt to use ZFS tools results in an
error. For example:

zfs mount pool/home/billm
cannot mount ’pool/home/billm’: legacy mountpoint
use mount(1M) to mount this filesystem
mount -F zfs tank/home/billm

When a file system is mounted, it uses a set of mount options based on the property values associated with
the dataset. The correlation between properties and mount options is as follows:

Property
Mount Options

devices
devices/nodevices

exec exec/noexec

readonly
ro/rw

setuid
setuid/nosetuid

The mount option nosuid is an alias for nodevices,nosetuid.

You can use the NFSv4 mirror mount features to help you better manage NFS-mounted ZFS home
directories. For a description of mirror mounts, see Section 1.1.

Using Temporary Mount Properties

If any of the above options are set explicitly by using the -o option with the zfs mount command, the
associated property value is temporarily overridden. These property values are reported as temporary
by the zfs get command and revert back to their original settings when the file system is unmounted. If a
property value is changed while the dataset is mounted, the change takes effect immediately, overriding
any temporary setting.

In the following example, the read-only mount option is temporarily set on the tank/home/perrin
file system:

zfs mount -o ro tank/home/perrin

In this example, the file system is assumed to be unmounted. To temporarily change a property on a file
system that is currently mounted, you must use the special remount option. In the following example,
the atime property is temporarily changed to off for a file system that is currently mounted:

zfs mount -o remount,noatime tank/home/perrin
zfs get atime tank/home/perrin
NAME PROPERTY VALUE SOURCE
tank/home/perrin atime off temporary

For more information about the zfs mount command, see zfs(1M).

95

5. MANAGING ZFS FILE SYSTEMS

Unmounting ZFS File Systems

You can unmount file systems by using the zfs unmount subcommand. The unmount command can take
either the mount point or the file system name as arguments.

In the following example, a file system is unmounted by file system name:
zfs unmount tank/home/tabriz

In the following example, the file system is unmounted by mount point:
zfs unmount /export/home/tabriz

The unmount command fails if the file system is active or busy. To forceably unmount a file system, you
can use the -f option. Be cautious when forceably unmounting a file system, if its contents are actively
being used. Unpredictable application behavior can result.
zfs unmount tank/home/eschrock
cannot unmount ’/export/home/eschrock’: Device busy
zfs unmount -f tank/home/eschrock

To provide for backwards compatibility, the legacy umount command can be used to unmount ZFS file
systems. For example:
umount /export/home/bob

For more information about the zfs umount command, see zfs(1M).

Sharing and Unsharing ZFS File Systems

Similar to mount points, ZFS can automatically share file systems by using the sharenfs property. Using
this method, you do not have to modify the /etc/dfs/dfstab file when a new file system is added.
The sharenfs property is a comma-separated list of options to pass to the share command. The special value
on is an alias for the default share options, which are read/write permissions for anyone. The special
value off indicates that the file system is not managed by ZFS and can be shared through traditional
means, such as the /etc/dfs/dfstab file. All file systems whose sharenfs property is not off are
shared during boot.

Controlling Share Semantics

By default, all file systems are unshared. To share a new file system, use zfs set syntax similar to the
following:
zfs set sharenfs=on tank/home/eschrock

The property is inherited, and file systems are automatically shared on creation if their inherited property
is not off. For example:
zfs set sharenfs=on tank/home
zfs create tank/home/bricker
zfs create tank/home/tabriz
zfs set sharenfs=ro tank/home/tabriz

Both tank/home/bricker and tank/home/tabriz are initially shared writable because they
inherit the sharenfs property from tank/home. Once the property is set to ro (readonly), tank/home/
tabriz is shared read-only regardless of the sharenfs property that is set for tank/home.

96

5.5. Mounting and Sharing ZFS File Systems

Unsharing ZFS File Systems

While most file systems are automatically shared and unshared during boot, creation, and destruction, file
systems sometimes need to be explicitly unshared. To do so, use the zfs unshare command. For example:

zfs unshare tank/home/tabriz

This command unshares the tank/home/tabriz file system. To unshare all ZFS file systems on the
system, you need to use the -a option.

zfs unshare -a

Sharing ZFS File Systems

Most of the time the automatic behavior of ZFS, sharing on boot and creation, is sufficient for normal
operation. If, for some reason, you unshare a file system, you can share it again by using the zfs share
command. For example:

zfs share tank/home/tabriz

You can also share all ZFS file systems on the system by using the -a option.

zfs share -a

Legacy Share Behavior

If the sharenfs property is off, then ZFS does not attempt to share or unshare the file system at any time.
This setting enables you to administer through traditional means such as the /etc/dfs/dfstab file.

Unlike the traditional mount command, the traditional share and unshare commands can still function
on ZFS file systems. As a result, you can manually share a file system with options that are different
from the settings of the sharenfs property. This administrative model is discouraged. Choose to either
manage NFS shares completely through ZFS or completely through the /etc/dfs/dfstab file. The
ZFS administrative model is designed to be simpler and less work than the traditional model. However, in
some cases, you might still want to control file system sharing behavior through the familiar model.

Sharing ZFS Files in a Solaris CIFS Environment

The sharesmb property is provided to share ZFS files by using the Solaris CIFS software product.
When this property is set on a ZFS file system, these shares are visible to CIFS client systems. For more
information about using the CIFS software product, see the System Administration Guide: Windows
Interoperability.

For a detailed description of the sharesmb property, see Section 5.2.

97

5. MANAGING ZFS FILE SYSTEMS

Example 5.1: Example—Sharing ZFS File Systems (sharesmb)

In this example, a ZFS file system sandbox/fs1 is created and shared with the sharesmb property.
If necessary, enable the SMB services.

svcadm enable -r smb/server
svcadm: svc:/milestone/network depends on svc:/network/physical, which has multiple instances.
svcs | grep smb
online 10:47:15 svc:/network/smb/server:default

zpool create sandbox mirror c0t2d0 c0t4d0
zfs create sandbox/fs1
zfs set sharesmb=on sandbox/fs1

The sharesmb property is set for sandbox/fs1 and its descendents.
Verify that the file system was shared. For example:

sharemgr show -vp
default nfs=()
zfs nfs=()

zfs/sandbox/fs1 smb=()
sandbox_fs1=/sandbox/fs1

A default SMB resource name, sandbox_fs1, is assigned automatically.
In this example, another file system is created, sandbox/fs2, and shared with a resource name, mysh
are.

zfs create sandbox/fs2
zfs set sharesmb=name=myshare sandbox/fs2
sharemgr show -vp
default nfs=()
zfs nfs=()

zfs/sandbox/fs1 smb=()
sandbox_fs1=/sandbox/fs1

zfs/sandbox/fs2 smb=()
myshare=/sandbox/fs2

The sandbox/fs2/fs2_sub1 file system is created and is automatically shared. The inherited re-
source name is myshare_fs2_sub1.

zfs create sandbox/fs2/fs2_sub1
sharemgr show -vp
default nfs=()
zfs nfs=()

zfs/sandbox/fs1 smb=()
sandbox_fs1=/sandbox/fs1

zfs/sandbox/fs2 smb=()
myshare=/sandbox/fs2
myshare_fs2_sub1=/sandbox/fs2/fs2_sub1

Disable SMB sharing for sandbox/fs2 and its descendents.

zfs set sharesmb=off sandbox/fs2
sharemgr show -vp
default nfs=()
zfs nfs=()

zfs/sandbox/fs1 smb=()
sandbox_fs1=/sandbox/fs1

98

5.6. ZFS Quotas and Reservations

In this example, the sharesmb property is set on the pool’s top-level file system. The descendent file
systems are automatically shared.

zpool create sandbox mirror c0t2d0 c0t4d0
zfs set sharesmb=on sandbox
zfs create sandbox/fs1
zfs create sandbox/fs2

The top-level file system has a resource name of sandbox, but the descendents have their dataset name
appended to the resource name.

sharemgr show -vp
default nfs=()
zfs nfs=()

zfs/sandbox smb=()
sandbox=/sandbox
sandbox_fs1=/sandbox/fs1 smb=()
sandbox_fs2=/sandbox/fs2 smb=()

5.6 ZFS Quotas and Reservations

ZFS supports quotas and reservations at the file system level. You can use the quota property to set a limit
on the amount of space a file system can use. In addition, you can use the reservation property to guarantee
that some amount of space is available to a file system. Both properties apply to the dataset they are set on
and all descendents of that dataset.

That is, if a quota is set on the tank/home dataset, the total amount of space used by tank/home
and all of its descendents cannot exceed the quota. Similarly, if tank/home is given a reservation,
tank/home and all of its descendents draw from that reservation. The amount of space used by a dataset
and all of its descendents is reported by the used property.

In addition to the quota and reservation property, the refquota and refreservation prop-
erties are available to manage file system space without accounting for space consumed by descendents,
such as snapshots and clones.

Consider the following points to determine which quota and reservations features might better manage
your file systems:

• The quota and reservation properties are convenient for managing space consumed by datasets.

• The refquota and refreservation properties are appropriate for managing space consumed by
datasets and snapshots.

• Setting refquota or refreservation higher than quota or reservation have no effect. If you set
the quota or refquota properties, operations that try to exceed either value fail. It is possible to a
exceed a quota that is greater than refquota. If some snapshot blocks are dirtied, you might actually
exceed the quota before you exceed the refquota.

For more information, see the examples below.

99

5. MANAGING ZFS FILE SYSTEMS

Setting Quotas on ZFS File Systems

ZFS quotas can be set and displayed by using the zfs set and zfs get commands. In the following example,
a quota of 10 Gbytes is set on tank/home/bonwick.

zfs set quota=10G tank/home/bonwick
zfs get quota tank/home/bonwick
NAME PROPERTY VALUE SOURCE
tank/home/bonwick quota 10.0G local

ZFS quotas also impact the output of the zfs list and df commands. For example:

zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank/home 16.5K 33.5G 8.50K /export/home
tank/home/bonwick 15.0K 10.0G 8.50K /export/home/bonwick
tank/home/bonwick/ws 6.50K 10.0G 8.50K /export/home/bonwick/ws
df -h /export/home/bonwick
Filesystem size used avail capacity Mounted on
tank/home/bonwick 10G 8K 10G 1% /export/home/bonwick

Note that although tank/home has 33.5 Gbytes of space available, tank/home/bonwick and
tank/home/bonwick/ws only have 10 Gbytes of space available, due to the quota on tank/home/
bonwick.

You cannot set a quota to an amount less than is currently being used by a dataset. For example:

zfs set quota=10K tank/home/bonwick
cannot set quota for ’tank/home/bonwick’: size is less than current used or
reserved space

You can set a refquota on a dataset that limits the amount of space that the dataset can consume. This
hard limit does not include space that is consumed by snapshots and clones. For example:

zfs set refquota=10g students/studentA
zfs list
NAME USED AVAIL REFER MOUNTPOINT
profs 106K 33.2G 18K /profs
students 57.7M 33.2G 19K /students
students/studentA 57.5M 9.94G 57.5M /students/studentA
zfs snapshot students/studentA@today
zfs list
NAME USED AVAIL REFER MOUNTPOINT
profs 106K 33.2G 18K /profs
students 57.7M 33.2G 19K /students
students/studentA 57.5M 9.94G 57.5M /students/studentA
students/studentA@today 0 - 57.5M -

For additional convenience, you can set another quota on a dataset to help manage the space that is
consumed by snapshots. For example:

zfs set quota=20g students/studentA
zfs list
NAME USED AVAIL REFER MOUNTPOINT
profs 106K 33.2G 18K /profs
students 57.7M 33.2G 19K /students
students/studentA 57.5M 9.94G 57.5M /students/studentA
students/studentA@today 0 - 57.5M -

100

5.6. ZFS Quotas and Reservations

In this scenario, studentA can bump into the refquota (10 Gbytes) hard limit and remove files to recover
even if snapshots exist.

In the above example, the smaller of the two quotas (10 Gbytes versus 20 Gbytes) is displayed in the zfs
list output. To see the value of both quotas, use the zfs get command. For example:

zfs get refquota,quota students/studentA
NAME PROPERTY VALUE SOURCE
students/studentA refquota 10G local
students/studentA quota 20G local

Setting Reservations on ZFS File Systems

A ZFS reservation is an allocation of space from the pool that is guaranteed to be available to a dataset.
As such, you cannot reserve space for a dataset if that space is not currently available in the pool. The total
amount of all outstanding unconsumed reservations cannot exceed the amount of unused space in the pool.
ZFS reservations can be set and displayed by using the zfs set and zfs get commands. For example:

zfs set reservation=5G tank/home/moore
zfs get reservation tank/home/moore
NAME PROPERTY VALUE SOURCE
tank/home/moore reservation 5.00G local

ZFS reservations can affect the output of the zfs list command. For example:

zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank/home 5.00G 33.5G 8.50K /export/home
tank/home/moore 15.0K 10.0G 8.50K /export/home/moore

Note that tank/home is using 5 Gbytes of space, although the total amount of space referred to by
tank/home and its descendents is much less than 5 Gbytes. The used space reflects the space reserved
for tank/home/moore. Reservations are considered in the used space of the parent dataset and do
count against its quota, reservation, or both.

zfs set quota=5G pool/filesystem
zfs set reservation=10G pool/filesystem/user1
cannot set reservation for ’pool/filesystem/user1’: size is greater than
available space

A dataset can use more space than its reservation, as long as space is available in the pool that is unreserved
and the dataset’s current usage is below its quota. A dataset cannot consume space that has been reserved
for another dataset.

Reservations are not cumulative. That is, a second invocation of zfs set to set a reservation does not add
its reservation to the existing reservation. Rather, the second reservation replaces the first reservation.

zfs set reservation=10G tank/home/moore
zfs set reservation=5G tank/home/moore
zfs get reservation tank/home/moore
NAME PROPERTY VALUE SOURCE
tank/home/moore reservation 5.00G local

You can set a refreservation to guarantee space for a dataset that does not include space consumed
by snapshots and clones. The refreservation reservation is accounted for in the parent datasets’
space used, and counts against the parent datasets’ quotas and reservations. For example:

101

5. MANAGING ZFS FILE SYSTEMS

zfs set refreservation=10g profs/prof1
zfs list
NAME USED AVAIL REFER MOUNTPOINT
profs 10.0G 23.2G 19K /profs
profs/prof1 10G 33.2G 18K /profs/prof1

You can also set a reservation on the same dataset to guarantee dataset space and snapshot space. For
example:

zfs set reservation=20g profs/prof1
zfs list
NAME USED AVAIL REFER MOUNTPOINT
profs 20.0G 13.2G 19K /profs
profs/prof1 10G 33.2G 18K /profs/prof1

Regular reservations are accounted for in the parent’s used space.

In the above example, the smaller of the two quotas (10 Gbytes versus 20 Gbytes) is displayed in the zfs
list output. To see the value of both quotas, use the zfs get command. For example:

zfs get reservation,refreserv profs/prof1
NAME PROPERTY VALUE SOURCE
profs/prof1 reservation 20G local
profs/prof1 refreservation 10G local

If refreservation is set, a snapshot is only allowed if enough free pool space exists outside of this
reservation to accommodate the current number of referenced bytes in the dataset.

102

Chapter 6

Working With ZFS Snapshots and Clones

This chapter describes how to create and manage ZFS snapshots and clones. Information about saving
snapshots is also provided in this chapter.

The following sections are provided in this chapter:

• Section 6.1

• Section 6.1

• Section 6.1

• Section 6.1

• Section 6.2

• Section 6.2

• Section 6.2

• Section 6.3

6.1 Overview of ZFS Snapshots

A snapshot is a read-only copy of a file system or volume. Snapshots can be created almost instantly, and
initially consume no additional disk space within the pool. However, as data within the active dataset
changes, the snapshot consumes disk space by continuing to reference the old data and so prevents the
space from being freed.

ZFS snapshots include the following features:

• Persist across system reboots.

• The theoretical maximum number of snapshots is 264.

• Use no separate backing store. Snapshots consume disk space directly from the same storage pool as the
file system from which they were created.

103

6. WORKING WITH ZFS SNAPSHOTS AND CLONES

• Recursive snapshots are created quickly as one atomic operation. The snapshots are created together
(all at once) or not created at all. The benefit of atomic snapshots operations is that the snapshot data is
always taken at one consistent time, even across descendent file systems.

Snapshots of volumes cannot be accessed directly, but they can be cloned, backed up, rolled back to, and
so on. For information about backing up a ZFS snapshot, see Section 6.3.

Creating and Destroying ZFS Snapshots

Snapshots are created by using the zfs snapshot command, which takes as its only argument the name of
the snapshot to create. The snapshot name is specified as follows:

filesystem@snapname
volume@snapname

The snapshot name must satisfy the naming conventions defined in Section 1.4.

In the following example, a snapshot of tank/home/ahrens that is named friday is created.

zfs snapshot tank/home/ahrens@friday

You can create snapshots for all descendent file systems by using the -r option. For example:

zfs snapshot -r tank/home@now
zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
tank/home@now 0 - 29.5K -
tank/home/ahrens@now 0 - 2.15M -
tank/home/anne@now 0 - 1.89M -
tank/home/bob@now 0 - 1.89M -
tank/home/cindys@now 0 - 2.15M -

Snapshots have no modifiable properties. Nor can dataset properties be applied to a snapshot.

zfs set compression=on tank/home/ahrens@tuesday
cannot set compression property for ’tank/home/ahrens@tuesday’: snapshot
properties cannot be modified

Snapshots are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/ahrens@friday

A dataset cannot be destroyed if snapshots of the dataset exist. For example:

zfs destroy tank/home/ahrens
cannot destroy ’tank/home/ahrens’: filesystem has children
use ’-r’ to destroy the following datasets:
tank/home/ahrens@tuesday
tank/home/ahrens@wednesday
tank/home/ahrens@thursday

In addition, if clones have been created from a snapshot, then they must be destroyed before the snapshot
can be destroyed.

For more information about the destroy subcommand, see Section 5.1.

104

6.1. Overview of ZFS Snapshots

Renaming ZFS Snapshots

You can rename snapshots but they must be renamed within the pool and dataset from which they were
created. For example:

zfs rename tank/home/cindys@083006 tank/home/cindys@today

In addition, the following shortcut syntax provides equivalent snapshot renaming syntax as the example
above.

zfs rename tank/home/cindys@083006 today

The following snapshot rename operation is not supported because the target pool and file system name
are different from the pool and file system where the snapshot was created.

zfs rename tank/home/cindys@today pool/home/cindys@saturday
cannot rename to ’pool/home/cindys@today’: snapshots must be part of same
dataset

You can recursively rename snapshots with the zfs rename -r command. For example:

zfs list
NAME USED AVAIL REFER MOUNTPOINT
users 270K 16.5G 22K /users
users/home 76K 16.5G 22K /users/home
users/home@yesterday 0 - 22K -
users/home/markm 18K 16.5G 18K /users/home/markm
users/home/markm@yesterday 0 - 18K -
users/home/marks 18K 16.5G 18K /users/home/marks
users/home/marks@yesterday 0 - 18K -
users/home/neil 18K 16.5G 18K /users/home/neil
users/home/neil@yesterday 0 - 18K -
zfs rename -r users/home@yesterday @2daysago
zfs list -r users/home
NAME USED AVAIL REFER MOUNTPOINT
users/home 76K 16.5G 22K /users/home
users/home@2daysago 0 - 22K -
users/home/markm 18K 16.5G 18K /users/home/markm
users/home/markm@2daysago 0 - 18K -
users/home/marks 18K 16.5G 18K /users/home/marks
users/home/marks@2daysago 0 - 18K -
users/home/neil 18K 16.5G 18K /users/home/neil
users/home/neil@2daysago 0 - 18K -

Displaying and Accessing ZFS Snapshots

Snapshots of file systems are accessible in the .zfs/snapshot directory within the root of the
containing file system. For example, if tank/home/ahrens is mounted on /home/ahrens, then
the tank/home/ahrens@thursday snapshot data is accessible in the /home/ahrens/.zfs/
snapshot/thursday directory.

ls /tank/home/ahrens/.zfs/snapshot
tuesday wednesday thursday

You can list snapshots as follows:

105

6. WORKING WITH ZFS SNAPSHOTS AND CLONES

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
pool/home/anne@monday 0 - 780K -
pool/home/bob@monday 0 - 1.01M -
tank/home/ahrens@tuesday 8.50K - 780K -
tank/home/ahrens@wednesday 8.50K - 1.01M -
tank/home/ahrens@thursday 0 - 1.77M -
tank/home/cindys@today 8.50K - 524K -

You can list snapshots that were created for a particular file system as follows:

zfs list -r -t snapshot -o name,creation tank/home
NAME CREATION
tank/home@now Wed Aug 30 10:53 2006
tank/home/ahrens@tuesday Wed Aug 30 10:53 2006
tank/home/ahrens@wednesday Wed Aug 30 10:54 2006
tank/home/ahrens@thursday Wed Aug 30 10:53 2006
tank/home/cindys@now Wed Aug 30 10:57 2006

Snapshot Space Accounting

When a snapshot is created, its space is initially shared between the snapshot and the file system, and
possibly with previous snapshots. As the file system changes, space that was previously shared becomes
unique to the snapshot, and thus is counted in the snapshot’s used property. Additionally, deleting snapshots
can increase the amount of space unique to (and thus used by) other snapshots.

A snapshot’s space referenced property is the same as the file system’s was when the snapshot was created.

Rolling Back to a ZFS Snapshot

The zfs rollback command can be used to discard all changes made since a specific snapshot. The file
system reverts to its state at the time the snapshot was taken. By default, the command cannot roll back to
a snapshot other than the most recent snapshot.

To roll back to an earlier snapshot, all intermediate snapshots must be destroyed. You can destroy earlier
snapshots by specifying the -r option.

If clones of any intermediate snapshots exist, the -R option must be specified to destroy the clones as well.

Note
The file system that you want to roll back must be unmounted and remounted, if it is currently mounted.
If the file system cannot be unmounted, the rollback fails. The -f option forces the file system to be
unmounted, if necessary.

In the following example, the tank/home/ahrens file system is rolled back to the tuesday snapshot:

zfs rollback tank/home/ahrens@tuesday
cannot rollback to ’tank/home/ahrens@tuesday’: more recent snapshots exist
use ’-r’ to force deletion of the following snapshots:
tank/home/ahrens@wednesday
tank/home/ahrens@thursday
zfs rollback -r tank/home/ahrens@tuesday

106

6.2. Overview of ZFS Clones

In the above example, the wednesday and thursday snapshots are removed because you rolled back
to the previous tuesday snapshot.
zfs list -r -t snapshot -o name,creation tank/home/ahrens
NAME CREATION
tank/home/ahrens@tuesday Wed Aug 30 10:53 2006

6.2 Overview of ZFS Clones

A clone is a writable volume or file system whose initial contents are the same as the dataset from which
it was created. As with snapshots, creating a clone is nearly instantaneous, and initially consumes no
additional disk space. In addition, you can snapshot a clone.

• Section 6.2

• Section 6.2

• Section 6.2

Clones can only be created from a snapshot. When a snapshot is cloned, an implicit dependency is created
between the clone and snapshot. Even though the clone is created somewhere else in the dataset hierarchy,
the original snapshot cannot be destroyed as long as the clone exists. The origin property exposes this
dependency, and the zfs destroy command lists any such dependencies, if they exist.

Clones do not inherit the properties of the dataset from which it was created. Use the zfs get and zfs set
commands to view and change the properties of a cloned dataset. For more information about setting ZFS
dataset properties, see Section 5.4.

Because a clone initially shares all its disk space with the original snapshot, its used property is initially
zero. As changes are made to the clone, it uses more space. The used property of the original snapshot
does not consider the disk space consumed by the clone.

Creating a ZFS Clone

To create a clone, use the zfs clone command, specifying the snapshot from which to create the clone, and
the name of the new file system or volume. The new file system or volume can be located anywhere in
the ZFS hierarchy. The type of the new dataset (for example, file system or volume) is the same type as
the snapshot from which the clone was created. You cannot create clone of a file system in a pool that is
different from where the original file system snapshot resides.

In the following example, a new clone named tank/home/ahrens/bug123 with the same initial
contents as the snapshot tank/ws/gate@yesterday is created.
zfs snapshot tank/ws/gate@yesterday
zfs clone tank/ws/gate@yesterday tank/home/ahrens/bug123

In the following example, a cloned workspace is created from the projects/newproject@today
snapshot for a temporary user as projects/teamA/tempuser. Then, properties are set on the cloned
workspace.
zfs snapshot projects/newproject@today
zfs clone projects/newproject@today projects/teamA/tempuser
zfs set sharenfs=on projects/teamA/tempuser
zfs set quota=5G projects/teamA/tempuser

107

6. WORKING WITH ZFS SNAPSHOTS AND CLONES

Destroying a ZFS Clone

ZFS clones are destroyed by using the zfs destroy command. For example:

zfs destroy tank/home/ahrens/bug123

Clones must be destroyed before the parent snapshot can be destroyed.

Replacing a ZFS File System With a ZFS Clone

You can use the zfs promote command to replace an active ZFS file system with a clone of that file system.
This feature facilitates the ability to clone and replace file systems so that the “origin” file system become
the clone of the specified file system. In addition, this feature makes it possible to destroy the file system
from which the clone was originally created. Without clone promotion, you cannot destroy a “origin” file
system of active clones. For more information about destroying clones, see Section 6.2.

In the following example, the tank/test/productA file system is cloned and then the clone file
system, tank/test/productAbeta becomes the tank/test/productA file system.

zfs create tank/test
zfs create tank/test/productA
zfs snapshot tank/test/productA@today
zfs clone tank/test/productA@today tank/test/productAbeta
zfs list -r tank/test
NAME USED AVAIL REFER MOUNTPOINT
tank/test 314K 8.24G 25.5K /tank/test
tank/test/productA 288K 8.24G 288K /tank/test/productA
tank/test/productA@today 0 - 288K -
tank/test/productAbeta 0 8.24G 288K /tank/test/productAbeta
zfs promote tank/test/productAbeta
zfs list -r tank/test
NAME USED AVAIL REFER MOUNTPOINT
tank/test 316K 8.24G 27.5K /tank/test
tank/test/productA 0 8.24G 288K /tank/test/productA
tank/test/productAbeta 288K 8.24G 288K /tank/test/productAbeta
tank/test/productAbeta@today 0 - 288K -

In the above zfs -list output, you can see that the space accounting of the original productA file
system has been replaced with the productAbeta file system.

Complete the clone replacement process by renaming the file systems. For example:

zfs rename tank/test/productA tank/test/productAlegacy
zfs rename tank/test/productAbeta tank/test/productA
zfs list -r tank/test
NAME USED AVAIL REFER MOUNTPOINT
tank/test 316K 8.24G 27.5K /tank/test
tank/test/productA 288K 8.24G 288K /tank/test/productA
tank/test/productA@today 0 - 288K -
tank/test/productAlegacy 0 8.24G 288K /tank/test/productAlegacy

Optionally, you can remove the legacy file system. For example:

zfs destroy tank/test/productAlegacy

108

6.3. Saving and Restoring ZFS Data

6.3 Saving and Restoring ZFS Data

The zfs send command creates a stream representation of a snapshot that is written to standard output.
By default, a full stream is generated. You can redirect the output to a file or to a different system. The
zfs receive command creates a snapshot whose contents are specified in the stream that is provided on
standard input. If a full stream is received, a new file system is created as well. You can save ZFS snapshot
data and restore ZFS snapshot data and file systems with these commands. See the examples in the next
section.

• Section 6.3

• Section 6.3

• Section 6.3

• Section 6.3

The following solutions for saving ZFS data are provided:

• Saving ZFS snapshots and rolling back snapshots, if necessary.

• Saving full and incremental copies of ZFS snapshots and restoring the snapshots and file systems, if
necessary.

• Remotely replicating ZFS file systems by saving and restoring ZFS snapshots and file systems.

• Saving ZFS data with archive utilities such as tar and cpio or third-party backup products.

Consider the following when choosing a solution for saving ZFS data:

• File system snapshots and rolling back snapshots – Use the zfs snapshot and zfs rollback commands if
you want to easily create a copy of a file system and revert back to a previous file system version, if
necessary. For example, if you want to restore a file or files from a previous version of a file system, you
could use this solution.

For more information about creating and rolling back to a snapshot, see Section 6.1.

• Saving snapshots – Use the zfs send and zfs receive commands to save and restore a ZFS snapshot. You
can save incremental changes between snapshots, but you cannot restore files individually. You must
restore the entire file system snapshot.

• Remote replication – Use the zfs send and zfs receive commands when you want to copy a file system
from one system to another. This process is different from a traditional volume management product that
might mirror devices across a WAN. No special configuration or hardware is required. The advantage
of replicating a ZFS file system is that you can re-create a file system on a storage pool on another
system, and specify different levels of configuration for the newly created pool, such as RAID-Z, but
with identical file system data.

109

6. WORKING WITH ZFS SNAPSHOTS AND CLONES

Saving ZFS Data With Other Backup Products

In addition to the zfs send and zfs receive commands, you can also use archive utilities, such as tar(1) and
cpio(1), to save ZFS files. All of these utilities save and restore ZFS file attributes and ACLs. Check the
appropriate options for the tar and cpio commands.

For up-to-date information about issues with ZFS and third-party backup products, please see the Solaris
Express Developer Edition release notes.

http://opensolaris.org/os/community/zfs/faq/#backupsoftware

Saving a ZFS Snapshot

The most common use of the zfs send command is to save a copy of a snapshot and receive the snapshot
on another system that is used to store backup data. For example:

host1# zfs send tank/dana@snap1 | ssh host2 zfs recv newtank/dana

When sending a full stream, the destination file system must not exist.

You can save incremental data by using the zfs send -i option. For example:

host1# zfs send -i tank/dana@snap1 tank/dana@snap2 | ssh host2 zfs recv newtank/dana

Note that the first argument is the earlier snapshot and the second argument is the later snapshot. In this
case, the newtank/dana file system must exist for the incremental receive to be successful.

The incremental snapshot1 source can be specified as the last component of the snapshot name. This
shortcut means you only have to specify the name after the @ sign for snapshot1, which is assumed to
be from the same file system as snapshot2. For example:

host1# zfs send -i snap1 tank/dana@snap2 > ssh host2 zfs recv newtank/dana

This syntax is equivalent to the above example of the incremental syntax.

The following message is displayed if you attempt to generate an incremental stream from a different file
system snapshot1:

cannot send ’pool/fs@name’: not an earlier snapshot from the same fs

If you need to store many copies, you might consider compressing a ZFS snapshot stream representation
with the gzip command. For example:

zfs send pool/fs@snap | gzip > backupfile.gz

Restoring a ZFS Snapshot

Keep the following key points in mind when you restore a file system snapshot:

• The snapshot and the file system are restored.

• The file system and all descendent file systems are unmounted.

• The file systems are inaccessible while they are being restored.

110

6.3. Saving and Restoring ZFS Data

• The original file system to be restored must not exist while it is being restored.

• If a conflicting file system name exists, zfs rename can be used to rename the file system.

For example:

zfs send tank/gozer@0830 > /bkups/gozer.083006
zfs receive tank/gozer2@today < /bkups/gozer.083006
zfs rename tank/gozer tank/gozer.old
zfs rename tank/gozer2 tank/gozer

You can use zfs recv as an alias for the zfs receive command.

If you make a change to the file system and you want to do another incremental send of a snapshot, you
must first rollback the receiving file system.

For example, if you make a change to the file system as follows:

host2# rm newtank/dana/file.1

And you do an incremental send of tank/dana@snap3, you must first rollback the receiving file system
to receive the new incremental snapshot. You can eliminate the rollback step by using the -F option. For
example:

host1# zfs send -i tank/dana@snap2 tank/dana@snap3 | ssh host2 zfs recv -F newtank/dana

When you receive an incremental snapshot, the destination file system must already exist.

If you make changes to the file system and you do not rollback the receiving file system to receive the new
incremental snapshot or you do not use the -F option, you will see the following message:

host1# zfs send -i tank/dana@snap4 tank/dana@snap5 | ssh host2 zfs recv newtank/dana
cannot receive: destination has been modified since most recent snapshot

The following checks are performed before the -F option is successful:

• If the most recent snapshot doesn’t match the incremental source, neither the rollback nor the receive is
completed, and an error message is returned.

• If you accidentally provide the name of different file system that doesn’t match the incremental source
to the zfs receive command, neither the rollback nor the receive is completed, and the following error
message is returned.

cannot send ’pool/fs@name’: not an earlier snapshot from the same fs

Sending and Receiving Complex ZFS Snapshot Streams

This section describes how to use the zfs send -I and -R options to send and receive more complex
snapshot streams.

Keep the following points in mind when sending and receiving ZFS snapshot streams:

• Use the zfs send -I option to send all incremental streams from one snapshot to a cumulative snapshot.
Or, use this option to send an incremental stream from the origin snapshot to create a clone. The original
snapshot must already exist on the receiving side to accept the incremental stream.

111

6. WORKING WITH ZFS SNAPSHOTS AND CLONES

• Use the zfs send -R option to send a replication stream of all descendent file systems. When received,
all properties, snapshots, descendent file systems, and clones are preserved.

• Or use both options to send an incremental replication stream.

– Changes to properties and snapshot and file system renames and destroys are preserved.

– If zfs recv -F is not specified when receiving the replication stream, dataset destroys are ignored.
The zfs recv -F syntax in this case also retains its rollback if necessary meaning.

– As with other (non zfs send -R) -i or -I cases, if -I is used, all snapshots between snapA and
snapD are sent. If -i is used, only snapD (for all descendents) are sent.

• To receive any of these new types of zfs send streams, the receiving system must be running a software
version capable of sending them. The stream version is incremented.

• However, you can access streams from older pool versions by using a newer software version, which can
also access newer pool versions. For example, you can send and receive streams created with the newer
options to and from a version 3 pool. But, you must be running recent software to receive a stream sent
with the newer options.

Example 6.1: Examples—Sending and Receiving Complex ZFS Snapshot Streams

A group of incremental snapshots can be combined into one snapshot by using the zfs send -I option.
For example:

zfs send -I pool/fs@snapA pool/fs@snapD > /snaps/fs@all-I

Remove snapshots B, C, and D.

zfs destroy pool/fs@snapB
zfs destroy pool/fs@snapC
zfs destroy pool/fs@snapD

Restore the combined snapshot.

zfs receive -d -F pool/fs < /snaps/fs@all-I
zfs list
NAME USED AVAIL REFER MOUNTPOINT
pool 428K 16.5G 20K /pool
pool/fs 71K 16.5G 21K /pool/fs
pool/fs@snapA 16K - 18.5K -
pool/fs@snapB 17K - 20K -
pool/fs@snapC 17K - 20.5K -
pool/fs@snapD 0 - 21K -

You can also use the zfs send -I command to combine a snapshot and a clone snapshot to create a
combined dataset. For example:

zfs create pool/fs
zfs snapshot pool/fs@snap1
zfs clone pool/fs@snap1 pool/clone
zfs snapshot pool/clone@snapA
zfs send -I pool/fs@snap1 pool/clone@snapA > /snaps/fsclonesnap-I
zfs destroy pool/clone@snapA
zfs destroy pool/clone
zfs receive -F pool/clone < /snaps/fsclonesnap-I

112

6.3. Saving and Restoring ZFS Data

Use the zfs send -R command to replicate a ZFS file system and all descendent file systems, up to
the named snapshot. When received, all properties, snapshots, descendent file systems, and clones are
preserved.
In the following example, snapshots are created of user file systems. One replication stream is created of
all user snapshots. Then, the original file systems and snapshots are destroyed and recovered.

zfs snapshot -r users@today
zfs list
NAME USED AVAIL REFER MOUNTPOINT
users 187K 33.2G 22K /users
users@today 0 - 22K -
users/user1 18K 33.2G 18K /users/user1
users/user1@today 0 - 18K -
users/user2 18K 33.2G 18K /users/user2
users/user2@today 0 - 18K -
users/user3 18K 33.2G 18K /users/user3
users/user3@today 0 - 18K -
zfs send -R users@today > /snaps/users-R
zfs destroy -r users
zfs receive -F -d users < /snaps/users-R
zfs list
NAME USED AVAIL REFER MOUNTPOINT
users 196K 33.2G 22K /users
users@today 0 - 22K -
users/user1 18K 33.2G 18K /users/user1
users/user1@today 0 - 18K -
users/user2 18K 33.2G 18K /users/user2
users/user2@today 0 - 18K -
users/user3 18K 33.2G 18K /users/user3
users/user3@today 0 - 18K -

You can use the zfs send R command to replicate the users dataset and its descendents and send the
replicated stream to another pool, users2.

zfs create users2 mirror c0t1d0 c1t1d0
zfs receive -F -d users2 < /snaps/users-R
zfs list
NAME USED AVAIL REFER MOUNTPOINT
users 224K 33.2G 22K /users
users@today 0 - 22K -
users/user1 33K 33.2G 18K /users/user1
users/user1@today 15K - 18K -
users/user2 18K 33.2G 18K /users/user2
users/user2@today 0 - 18K -
users/user3 18K 33.2G 18K /users/user3
users/user3@today 0 - 18K -
users2 188K 16.5G 22K /users2
users2@today 0 - 22K -
users2/user1 18K 16.5G 18K /users2/user1
users2/user1@today 0 - 18K -
users2/user2 18K 16.5G 18K /users2/user2
users2/user2@today 0 - 18K -
users2/user3 18K 16.5G 18K /users2/user3
users2/user3@today 0 - 18K -

113

6. WORKING WITH ZFS SNAPSHOTS AND CLONES

Remote Replication of ZFS Data

You can use the zfs send and zfs recv commands to remotely copy a snapshot stream representation from
one system to another system. For example:

zfs send tank/cindy@today | ssh newsys zfs recv sandbox/restfs@today

This command saves the tank/cindy@today snapshot data and restores it into the sandbox/
restfs file system and also creates a restfs@today snapshot on the newsys system. In this
example, the user has been configured to use ssh on the remote system.

114

Chapter 7

Using ACLs to Protect ZFS Files

This chapter provides information about using access control lists (ACLs) to protect your ZFS files by
providing more granular permissions than the standard UNIX permissions.

The following sections are provided in this chapter:

• Section 7.1

• Section 7.2

• Section 7.3

• Section 7.4

7.1 The NFSv4 ACL Model

Older versions of Solaris supported an ACL implementation that was primarily based on the POSIX-draft
ACL specification. The POSIX-draft based ACLs are used to protect UFS files and are translated by
versions of NFS prior to NFSv4.

With the introduction of NFSv4, a new ACL model fully supports the interoperability that NFSv4 offers be-
tween UNIX and non-UNIX clients. The new ACL implementation, as defined in the NFSv4 specification,
provides much richer semantics that are based on NT-style ACLs.

The main differences of the new ACL model are as follows:

• Based on the NFSv4 specification and similar to NT-style ACLs.

• Provide much more granular set of access privileges. For more information, see Table 7.2.

• Set and displayed with the chmod and ls commands rather than the setfacl and getfacl commands.

• Provide richer inheritance semantics for designating how access privileges are applied from directory to
subdirectories, and so on. For more information, see Section 7.1.

115

7. USING ACLS TO PROTECT ZFS FILES

Both ACL models provide more fine-grained access control than is available with the standard file
permissions. Much like POSIX-draft ACLs, the new ACLs are composed of multiple Access Control
Entries (ACEs).

POSIX-draft style ACLs use a single entry to define what permissions are allowed and what permissions
are denied. The new ACL model has two types of ACEs that affect access checking: ALLOW and DENY.
As such, you cannot infer from any single ACE that defines a set of permissions whether or not the
permissions that weren’t defined in that ACE are allowed or denied.

Translation between NFSv4-style ACLs and POSIX-draft ACLs is as follows:

• If you use any ACL-aware utility, such as the cp, mv, tar, cpio, or rcp commands, to transfer UFS files
with ACLs to a ZFS file system, the POSIX-draft ACLs are translated into the equivalent NFSv4-style
ACLs.

• Some NFSv4-style ACLs are translated to POSIX-draft ACLs. You see a message similar to the following
if an NFSv4–style ACL isn’t translated to a POSIX-draft ACL:

cp -p filea /var/tmp
cp: failed to set acl entries on /var/tmp/filea

• If you create a UFS tar or cpio archive with the preserve ACL option (tar -p or cpio -P) on a system
that runs a current Solaris release, you will lose the ACLs when the archive is extracted on a system that
runs a previous Solaris release.

All of the files are extracted with the correct file modes, but the ACL entries are ignored.

• You can use the ufsrestore command to restore data into a ZFS file system, but the ACLs will be lost.

• If you attempt to set an NFSv4-style ACL on a UFS file, you see a message similar to the following:

chmod: ERROR: ACL type’s are different

• If you attempt to set a POSIX-style ACL on a ZFS file, you will see messages similar to the following:

getfacl filea
File system doesn’t support aclent_t style ACL’s.
See acl(5) for more information on Solaris ACL support.

For information about other limitations with ACLs and backup products, see Section 6.3.

Syntax Descriptions for Setting ACLs

Two basic ACL formats are provided as follows:

Syntax for Setting Trivial ACLs

chmod [options] A[index]{+|=}owner@|group@|everyone@:access-permissions/...[:inheritance-
flags]:deny | allow file

chmod [options] A-owner@, group@, everyone@:access-permissions/...[:inheritance-flags]:den
y | allow file ...

chmod [options] A[index]- file

116

7.1. The NFSv4 ACL Model

Syntax for Setting Non-Trivial ACLs

chmod [options] A[index]{+|=}user|group:name:access-permissions/...[:inheritance-flags]:
deny | allow file

chmod [options] A-user|group:name:access-permissions/...[:inheritance-flags]:deny | a
llow file ...

chmod [options] A[index]- file

owner@, group@, everyone@
Identifies the ACL-entry-type for trivial ACL syntax. For a description of ACL-entry-types, see
Table 7.1.

user or group:ACL-entry-ID=username or groupname
Identifies the ACL-entry-type for explicit ACL syntax. The user and group ACL-entry-type must
also contain the ACL-entry-ID, username or groupname. For a description of ACL-entry-types, see
Table 7.1.

access-permissions/.../
Identifies the access permissions that are granted or denied. For a description of ACL access
privileges, see Table 7.2.

inheritance-flags
Identifies an optional list of ACL inheritance flags. For a description of the ACL inheritance flags,
see Table 7.3.

deny | allow
Identifies whether the access permissions are granted or denied.

In the following example, the ACL-entry-ID value is not relevant:

group@:write_data/append_data/execute:deny

The following example includes an ACL-entry-ID because a specific user (ACL-entry-type) is included in
the ACL.

0:user:gozer:list_directory/read_data/execute:allow

When an ACL entry is displayed, it looks similar to the following:

2:group@:write_data/append_data/execute:deny

The 2 or the index-ID designation in this example identifies the ACL entry in the larger ACL, which might
have multiple entries for owner, specific UIDs, group, and everyone. You can specify the index-ID with the
chmod command to identify which part of the ACL you want to modify. For example, you can identify
index ID 3 as A3 to the chmod command, similar to the following:

chmod A3=user:venkman:read_acl:allow filename

ACL entry types, which are the ACL representations of owner, group, and other, are described in the
following table.

117

7. USING ACLS TO PROTECT ZFS FILES

Table 7.1: ACL Entry Types

ACL Entry Type Description
owner@ Specifies the access granted to the owner of the object.
group@ Specifies the access granted to the owning group of the object.

everyone@
Specifies the access granted to any user or group that does not match any
other ACL entry.

user

With a user name, specifies the access granted to an additional user of the
object. Must include the ACL-entry-ID, which contains a username or
userID. If the value is not a valid numeric UID or username, the ACL
entry type is invalid.

group

With a group name, specifies the access granted to an additional group of
the object. Must include the ACL-entry-ID, which contains a groupname
or groupID. If the value is not a valid numeric GID or groupname, the
ACL entry type is invalid.

ACL access privileges are described in the following table.

Table 7.2: ACL Access Privileges

Access Privilege Compact Access
Privilege Description

add_file w Permission to add a new file to a directory.
add_subdirectory p On a directory, permission to create a subdirectory.
append_data p Placeholder. Not currently implemented.
delete d Permission to delete a file.
delete_child D Permission to delete a file or directory within a directory.

execute x
Permission to execute a file or search the contents of a
directory.

list_directory r Permission to list the contents of a directory.
read_acl c Permission to read the ACL (ls).

read_attributes a

Permission to read basic attributes (non-ACLs) of a file.
Think of basic attributes as the stat level attributes.
Allowing this access mask bit means the entity can execute
ls(1) and stat(2).

read_data r Permission to read the contents of the file.

read_xattr R
Permission to read the extended attributes of a file or
perform a lookup in the file’s extended attributes directory.

synchronize s Placeholder. Not currently implemented.

write_xattr W

Permission to create extended attributes or write to the
extended attributes directory.
Granting this permission to a user means that the user can
create an extended attribute directory for a file. The
attribute file’s permissions control the user’s access to the
attribute.

write_data w Permission to modify or replace the contents of a file.

118

7.1. The NFSv4 ACL Model

Table 7.2: (continued)

Access Privilege Compact Access
Privilege Description

write_attributes A
Permission to change the times associated with a file or
directory to an arbitrary value.

write_acl C
Permission to write the ACL or the ability to modify the
ACL by using the chmod command.

write_owner o

Permission to change the file’s owner or group. Or, the
ability to execute the chown or chgrp commands on the
file.
Permission to take ownership of a file or permission to
change the group ownership of the file to a group of which
the user is a member. If you want to change the file or
group ownership to an arbitrary user or group, then the
PRIV_FILE_CHOWN privilege is required.

ACL Inheritance

The purpose of using ACL inheritance is so that a newly created file or directory can inherit the ACLs
they are intended to inherit, but without disregarding the existing permission bits on the parent directory.

By default, ACLs are not propagated. If you set an non-trivial ACL on a directory, it is not inherited to any
subsequent directory. You must specify the inheritance of an ACL on a file or directory.

The optional inheritance flags are described in the following table.

Table 7.3: ACL Inheritance Flags

Inheritance Flag
Compact
Inheritance
Flag

Description

file_inherit f
Only inherit the ACL from the parent directory to the
directory’s files.

dir_inherit d
Only inherit the ACL from the parent directory to the
directory’s subdirectories.

inherit_only i

Inherit the ACL from the parent directory but applies
only to newly created files or subdirectories and not the
directory itself. This flag requires the
file_inherit flag, the dir_inherit flag, or
both, to indicate what to inherit.

no_propagate n

Only inherit the ACL from the parent directory to the
first-level contents of the directory, not the
second-level or subsequent contents. This flag requires
the file_inherit flag, the dir_inherit flag,
or both, to indicate what to inherit.

119

7. USING ACLS TO PROTECT ZFS FILES

In addition, you can set a default ACL inheritance policy on the file system that is more strict or less strict
by using the aclinherit file system property. For more information, see the next section.

ACL Property Modes

The ZFS file system includes two property modes related to ACLs:

• aclinherit – This property determines the behavior of ACL inheritance. Values include the follow-
ing:

– discard – For new objects, no ACL entries are inherited when a file or directory is created. The
ACL on the file or directory is equal to the permission mode of the file or directory.

– noallow – For new objects, only inheritable ACL entries that have an access type of deny are
inherited.

– secure – For new objects, the write_owner and write_acl permissions are removed when
an ACL entry is inherited.

– passthrough – For new objects, the inheritable ACL entries are inherited with no changes made
to them. This mode, in effect, disables secure mode.

The default mode for the aclinherit is secure.

• aclmode – This property modifies ACL behavior whenever a file or directory’s mode is modified by
the chmod command or when a file is initially created. Values include the following:

– discard – All ACL entries are removed except for the entries needed to define the mode of the file
or directory.

– groupmask – User or group ACL permissions are reduced so that they are no greater than the group
permission bits, unless it is a user entry that has the same UID as the owner of the file or directory.
Then, the ACL permissions are reduced so that they are no greater than owner permission bits.

– passthrough – For new objects, the inheritable ACL entries are inherited with no changes made
to the them.

The default mode for the aclmode property is groupmask.

7.2 Setting ACLs on ZFS Files

As implemented with ZFS, ACLs are composed of an array of ACL entries. ZFS provides a pure ACL
model, where all files have an ACL. Typically, the ACL is trivial in that it only represents the traditional
UNIX owner/group/other entries.

ZFS files still have permission bits and a mode, but these values are more of a cache of what the ACL
represents. As such, if you change the permissions of the file, the file’s ACL is updated accordingly. In
addition, if you remove an non-trivial ACL that granted a user access to a file or directory, that user could
still have access to the file or directory because of the file or directory’s permission bits that grant access
to group or everyone. All access control decisions are governed by the permissions represented in a file or
directory’s ACL.

The primary rules of ACL access on a ZFS file are as follows:

120

7.2. Setting ACLs on ZFS Files

• ZFS processes ACL entries in the order they are listed in the ACL, from the top down.

• Only ACL entries that have a “who” that matches the requester of the access are processed.

• Once an allow permission has been granted, it cannot be denied by a subsequent ACL deny entry in the
same ACL permission set.

• The owner of the file is granted the write_acl permission unconditionally, even if the permission is
explicitly denied. Otherwise, any permission left unspecified is denied.

In the cases of deny permissions or when an access permission is missing, the privilege subsystem
determines what access request is granted for the owner of the file or for superuser. This mechanism
prevents owners of files from getting locked out of their files and enables superuser to modify files for
recovery purposes.

If you set an non-trivial ACL on a directory, the ACL is not automatically inherited by the directory’s
children. If you set an non-trivial ACL and you want it inherited to the directory’s children, you have to
use the ACL inheritance flags. For more information, see Table 7.3 and Section 7.3.

When you create a new file and depending on the umask value, a default trivial ACL, similar to the
following, is applied:

$ ls -v file.1
-r--r--r-- 1 root root 206663 May 4 11:52 file.1

0:owner@:write_data/append_data/execute:deny
1:owner@:read_data/write_xattr/write_attributes/write_acl/write_owner

:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Note that each user category (owner@, group@, everyone@) in this example has two ACL entries.
One entry for deny permissions, and one entry is for allow permissions.

A description of this file ACL is as follows:

0:owner@
The owner is denied execute permissions to the file (execute:deny).

1:owner@
The owner can read and modify the contents of the file (read_data/write_data/append
_data). The owner can also modify the file’s attributes such as timestamps, extended attributes,
and ACLs (write_xattr/write_attributes /write_acl). In addition, the owner can
modify the ownership of the file (write_owner:allow)

2:group@
The group is denied modify and execute permissions to the file (write_data/append_data/
execute:deny).

3:group@
The group is granted read permissions to the file (read_data:allow).

121

7. USING ACLS TO PROTECT ZFS FILES

4:everyone@
Everyone who is not user or group is denied permission to execute or modify the contents of the
file and to modify any attributes of the file (write_data/append_data/write_xattr/
execute/write_attributes/write_acl/write_owner:deny).

5:everyone@
Everyone who is not user or group is granted read permissions to the file, and the file’s attributes (rea
d_data/read_xattr/read_attributes/read_acl/synchronize:allow). The syn
chronize access permission is not currently implemented.

When a new directory is created and depending on the umask value, a default directory ACL is similar to
the following:

$ ls -dv dir.1
drwxr-xr-x 2 root root 2 Feb 23 10:37 dir.1

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny
3:group@:list_directory/read_data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

A description of this directory ACL is as follows:

0:owner@
The owner deny list is empty for the directory (::deny).

1:owner@
The owner can read and modify the directory contents (list_directory/read_data/add
_file/write_data/add_subdirectory/append_data), search the contents (exec
ute), and modify the file’s attributes such as timestamps, extended attributes, and ACLs (write_
xattr/write_attributes/write_acl). In addition, the owner can modify the ownership
of the directory (write_owner:allow).

2:group@
The group cannot add to or modify the directory contents (add_file/write_data/add_sub
directory/append_data:deny).

3:group@
The group can list and read the directory contents. In addition, the group has execute permission to
search the directory contents (list_directory/read_data/execute:allow).

4:everyone@
Everyone who is not user or group is denied permission to add to or modify the contents of the di-
rectory (add_file/write_data/add_subdirectory/append_data). In addition, the
permission to modify any attributes of the directory is denied. (write_xattr /write_attri
butes/write_acl/write_owner:deny).

122

7.3. Setting and Displaying ACLs on ZFS Files in Verbose Format

5:everyone@
Everyone who is not user or group is granted read and execute permissions to the directory contents
and the directory’s attributes (list_directory/read_data/read_xattr/execute/
read_attributes/read_acl/synchronize:allow). The synchronize access per-
mission is not currently implemented.

7.3 Setting and Displaying ACLs on ZFS Files in Verbose Format

You can use the chmod command to modify ACLs on ZFS files. The following chmod syntax for
modifying ACLs uses acl-specification to identify the format of the ACL. For a description of acl-
specification, see Section 7.1.

• Adding ACL entries

– Adding an ACL entry for a user
% chmod A+acl-specification filename

– Adding an ACL entry by index-ID

% chmod Aindex-ID+acl-specification filename

This syntax inserts the new ACL entry at the specified index-ID location.

• Replacing an ACL entry
% chmod Aindex-ID=acl-specification filename

% chmod A=acl-specification filename

• Removing ACL entries

– Removing an ACL entry by index-ID

% chmod Aindex-ID- filename

– Removing an ACL entry by user
% chmod A-acl-specification filename

– Removing all non-trivial ACEs from a file
% chmod A- filename

Verbose ACL information is displayed by using the ls -v command. For example:
ls -v file.1
-rw-r--r-- 1 root root 206663 Feb 16 11:00 file.1

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

123

7. USING ACLS TO PROTECT ZFS FILES

For information about using the compact ACL format, see Section 7.4.

Example 7.1: Modifying Trivial ACLs on ZFS Files

This section provides examples of setting and displaying trivial ACLs.
In the following example, a trivial ACL exists on file.1:

ls -v file.1
-rw-r--r-- 1 root root 206663 Feb 16 11:00 file.1

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, write_data permissions are granted for group@.

chmod A2=group@:append_data/execute:deny file.1
chmod A3=group@:read_data/write_data:allow file.1
ls -v file.1
-rw-rw-r-- 1 root root 206663 May 3 16:36 file.1

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:append_data/execute:deny
3:group@:read_data/write_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, permissions on file.1 are set back to 644.

chmod 644 file.1
ls -v file.1
-rw-r--r-- 1 root root 206663 May 3 16:36 file.1

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Example 7.2: Setting Non-Trivial ACLs on ZFS Files

This section provides examples of setting and displaying non-trivial ACLs.
In the following example, read_data/execute permissions are added for the user gozer on the
test.dir directory.

chmod A+user:gozer:read_data/execute:allow test.dir
ls -dv test.dir

124

7.3. Setting and Displaying ACLs on ZFS Files in Verbose Format

drwxr-xr-x+ 2 root root 2 Feb 16 11:12 test.dir
0:user:gozer:list_directory/read_data/execute:allow
1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, read_data/execute permissions are removed for user gozer.
chmod A0- test.dir
ls -dv test.dir
drwxr-xr-x 2 root root 2 Feb 16 11:12 test.dir

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny
3:group@:list_directory/read_data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Example 7.3: ACL Interaction With Permissions on ZFS Files

These ACL examples illustrate the interaction between setting ACLs and then changing the file or
directory’s permission bits.
In the following example, a trivial ACL exists on file.2:
ls -v file.2
-rw-r--r-- 1 root root 2703 Feb 16 11:16 file.2

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, ACL allow permissions are removed from everyone@.
chmod A5- file.2
ls -v file.2
-rw-r----- 1 root root 2703 Feb 16 11:16 file.2

0:owner@:execute:deny
1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
2:group@:write_data/append_data/execute:deny
3:group@:read_data:allow
4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

125

7. USING ACLS TO PROTECT ZFS FILES

In this output, the file’s permission bits are reset from 655 to 650. Read permissions for everyone@ have
been effectively removed from the file’s permissions bits when the ACL allow permissions are removed
for everyone@.
In the following example, the existing ACL is replaced with read_data/write_data permissions
for everyone@.

chmod A=everyone@:read_data/write_data:allow file.3
ls -v file.3
-rw-rw-rw-+ 1 root root 1532 Feb 16 11:18 file.3

0:everyone@:read_data/write_data:allow

In this output, the chmod syntax effectively replaces the existing ACL with read_data/write_d
ata:allow permissions to read/write permissions for owner, group, and everyone@. In this model,
everyone@ specifies access to any user or group. Since no owner@ or group@ ACL entry exists to
override the permissions for owner and group, the permission bits are set to 666.
In the following example, the existing ACL is replaced with read permissions for user gozer.

chmod A=user:gozer:read_data:allow file.3
ls -v file.3
----------+ 1 root root 1532 Feb 16 11:18 file.3

0:user:gozer:read_data:allow

In this output, the file permissions are computed to be 000 because no ACL entries exist for owner@,
group@, or everyone@, which represent the traditional permission components of a file. The owner of
the file can resolve this problem by resetting the permissions (and the ACL) as follows:

chmod 655 file.3
ls -v file.3
-rw-r-xr-x+ 1 root root 0 Mar 8 13:24 file.3

0:user:gozer::deny
1:user:gozer:read_data:allow
2:owner@:execute:deny
3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
4:group@:write_data/append_data:deny
5:group@:read_data/execute:allow
6:everyone@:write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:deny
7:everyone@:read_data/read_xattr/execute/read_attributes/read_acl

/synchronize:allow

Example 7.4: Restoring Trivial ACLs on ZFS Files

You can use the chmod command to remove all non-trivial ACLs on a file or directory.
In the following example, 2 non-trivial ACEs exist on test5.dir.

ls -dv test5.dir
drwxr-xr-x+ 2 root root 2 Feb 16 11:23 test5.dir

0:user:gozer:read_data:file_inherit:deny
1:user:lp:read_data:file_inherit:deny
2:owner@::deny
3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny
5:group@:list_directory/read_data/execute:allow
6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

126

7.3. Setting and Displaying ACLs on ZFS Files in Verbose Format

/write_attributes/write_acl/write_owner:deny
7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, the non-trivial ACLs for users gozer and lp are removed. The remaining
ACL contains the six default values for owner@, group@, and everyone@.

chmod A- test5.dir
ls -dv test5.dir
drwxr-xr-x 2 root root 2 Feb 16 11:23 test5.dir

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny
3:group@:list_directory/read_data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Setting ACL Inheritance on ZFS Files in Verbose Format

You can determine how ACLs are inherited or not inherited on files and directories. By default, ACLs are
not propagated. If you set an non-trivial ACL on a directory, the ACL is not inherited by any subsequent
directory. You must specify the inheritance of an ACL on a file or directory.

In addition, two ACL properties are provided that can be set globally on file systems: aclinherit and
aclmode. By default, aclinherit is set to secure and aclmode is set to groupmask.

For more information, see Section 7.1.

Example 7.5: Default ACL Inheritance

By default, ACLs are not propagated through a directory structure.
In the following example, an non-trivial ACE of read_data/write_data/execute is applied for
user gozer on test.dir.

chmod A+user:gozer:read_data/write_data/execute:allow test.dir
ls -dv test.dir
drwxr-xr-x+ 2 root root 2 Feb 17 14:45 test.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute:allow
1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

If a test.dir subdirectory is created, the ACE for user gozer is not propagated. User gozer would
only have access to sub.dir if the permissions on sub.dir granted him access as the file owner, group
member, or everyone@.

127

7. USING ACLS TO PROTECT ZFS FILES

mkdir test.dir/sub.dir
ls -dv test.dir/sub.dir
drwxr-xr-x 2 root root 2 Feb 17 14:46 test.dir/sub.dir

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny
3:group@:list_directory/read_data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Example 7.6: Granting ACL Inheritance on Files and Directories

This series of examples identify the file and directory ACEs that are applied when the file_inherit
flag is set.
In the following example, read_data/write_data permissions are added for files in the test.dir
directory for user gozer so that he has read access on any newly created files.
chmod A+user:gozer:read_data/write_data:file_inherit:allow test2.dir
ls -dv test2.dir
drwxr-xr-x+ 2 root root 2 Feb 17 14:47 test2.dir

0:user:gozer:read_data/write_data:file_inherit:allow
1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, user gozer’s permissions are applied on the newly created test2.dir/file.
2 file. The ACL inheritance granted, read_data:file_inherit:allow, means user gozer can
read the contents of any newly created file.
touch test2.dir/file.2
ls -v test2.dir/file.2
-rw-r--r--+ 1 root root 0 Feb 17 14:49 test2.dir/file.2

0:user:gozer:write_data:deny
1:user:gozer:read_data/write_data:allow
2:owner@:execute:deny
3:owner@:read_data/write_data/append_data/write_xattr/write_attributes+

/write_acl/write_owner:allow
4:group@:write_data/append_data/execute:deny
5:group@:read_data:allow
6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Because the aclmode for this file is set to the default mode, groupmask, user gozer does not have
write_data permission on file.2 because the group permission of the file does not allow it.

128

7.3. Setting and Displaying ACLs on ZFS Files in Verbose Format

Note the inherit_only permission, which is applied when the file_inherit or dir_inherit
flags are set, is used to propagate the ACL through the directory structure. As such, user gozer is only
granted or denied permission from everyone@ permissions unless he is the owner of the file or a member
of the owning group of the file. For example:

mkdir test2.dir/subdir.2
ls -dv test2.dir/subdir.2
drwxr-xr-x+ 2 root root 2 Feb 17 14:50 test2.dir/subdir.2

0:user:gozer:list_directory/read_data/add_file/write_data:file_inherit
/inherit_only:allow

1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The following series of examples identify the file and directory ACLs that are applied when both the
file_inherit and dir_inherit flags are set.
In the following example, user gozer is granted read, write, and execute permissions that are inherited
for newly created files and directories.

chmod A+user:gozer:read_data/write_data/execute:file_inherit/dir_inherit:allow test3.dir
ls -dv test3.dir
drwxr-xr-x+ 2 root root 2 Feb 17 14:51 test3.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute
:file_inherit/dir_inherit:allow

1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

touch test3.dir/file.3
ls -v test3.dir/file.3
-rw-r--r--+ 1 root root 0 Feb 17 14:53 test3.dir/file.3

0:user:gozer:write_data/execute:deny
1:user:gozer:read_data/write_data/execute:allow
2:owner@:execute:deny
3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
4:group@:write_data/append_data/execute:deny
5:group@:read_data:allow
6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

mkdir test3.dir/subdir.1
ls -dv test3.dir/subdir.1

129

7. USING ACLS TO PROTECT ZFS FILES

drwxr-xr-x+ 2 root root 2 May 4 15:00 test3.dir/subdir.1
0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/dir_inherit/inherit_only:allow
1:user:gozer:add_file/write_data:deny
2:user:gozer:list_directory/read_data/add_file/write_data/execute:allow
3:owner@::deny
4:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

5:group@:add_file/write_data/add_subdirectory/append_data:deny
6:group@:list_directory/read_data/execute:allow
7:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
8:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In these examples, because the permission bits of the parent directory for group@ and everyone@ deny
write and execute permissions, user gozer is denied write and execute permissions. The default aclmode
property is secure, which means that write_data and execute permissions are not inherited.
In the following example, user gozer is granted read, write, and execute permissions that are inherited
for newly created files, but are not propagated to subsequent contents of the directory.

chmod A+user:gozer:read_data/write_data/execute:file_inherit/no_propagate:allow test4.dir
ls -dv test4.dir
drwxr-xr-x+ 2 root root 2 Feb 17 14:54 test4.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute
:file_inherit/no_propagate:allow

1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example illustrates, when a new subdirectory is created, user gozer’s read_data/
write_data/execute permission for files are not propagated to the new sub4.dir directory.

mkdir test4.dir/sub4.dir
ls -dv test4.dir/sub4.dir
drwxr-xr-x 2 root root 2 Feb 17 14:57 test4.dir/sub4.dir

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data:deny
3:group@:list_directory/read_data/execute:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example illustrates, gozer’s read_data/write_data/execute permission for
files is propagated to the newly created file.

touch test4.dir/file.4
ls -v test4.dir/file.4

130

7.3. Setting and Displaying ACLs on ZFS Files in Verbose Format

-rw-r--r--+ 1 root root 0 May 4 15:02 test4.dir/file.4
0:user:gozer:write_data/execute:deny
1:user:gozer:read_data/write_data/execute:allow
2:owner@:execute:deny
3:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
4:group@:write_data/append_data/execute:deny
5:group@:read_data:allow
6:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
7:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Example 7.7: ACL Inheritance With ACL Mode Set to Passthrough

If the aclmode property on the tank/cindy file system is set to passthrough, then user gozer
would inherit the ACL applied on test4.dir for the newly created file.4 as follows:

zfs set aclmode=passthrough tank/cindy
touch test4.dir/file.4
ls -v test4.dir/file.4
-rw-r--r--+ 1 root root 0 Feb 17 15:15 test4.dir/file.4

0:user:gozer:read_data/write_data/execute:allow
1:owner@:execute:deny
2:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
3:group@:write_data/append_data/execute:deny
4:group@:read_data:allow
5:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
6:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

This output illustrates that the read_data/write_data/execute:allow:file_inherit/
dir_inherit ACL that was set on the parent directory, test4.dir, is passed through to user gozer.

Example 7.8: ACL Inheritance With ACL Mode Set to Discard

If the aclmode property on a file system is set to discard, then ACLs can potentially be discarded when
the permission bits on a directory change. For example:

zfs set aclmode=discard tank/cindy
chmod A+user:gozer:read_data/write_data/execute:dir_inherit:allow test5.dir
ls -dv test5.dir
drwxr-xr-x+ 2 root root 2 Feb 16 11:23 test5.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute
:dir_inherit:allow

1:owner@::deny
2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

3:group@:add_file/write_data/add_subdirectory/append_data:deny
4:group@:list_directory/read_data/execute:allow
5:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
6:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

131

7. USING ACLS TO PROTECT ZFS FILES

/read_acl/synchronize:allow

If, at a later time, you decide to tighten the permission bits on a directory, the non-trivial ACL is discarded.
For example:

chmod 744 test5.dir
ls -dv test5.dir
drwxr--r-- 2 root root 2 Feb 16 11:23 test5.dir

0:owner@::deny
1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

2:group@:add_file/write_data/add_subdirectory/append_data/execute:deny
3:group@:list_directory/read_data:allow
4:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/execute/write_attributes/write_acl/write_owner:deny
5:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

Example 7.9: ACL Inheritance With ACL Inherit Mode Set to Noallow

In the following example, two non-trivial ACLs with file inheritance are set. One ACL allows read_data
permission, and one ACL denies read_data permission. This example also illustrates how you can
specify two ACEs in the same chmod command.

zfs set aclinherit=nonallow tank/cindy
chmod A+user:gozer:read_data:file_inherit:deny,user:lp:read_data:file_inherit:allow test6.dir
ls -dv test6.dir
drwxr-xr-x+ 2 root root 2 May 4 14:23 test6.dir

0:user:gozer:read_data:file_inherit:deny
1:user:lp:read_data:file_inherit:allow
2:owner@::deny
3:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/write_xattr/execute/write_attributes/write_acl
/write_owner:allow

4:group@:add_file/write_data/add_subdirectory/append_data:deny
5:group@:list_directory/read_data/execute:allow
6:everyone@:add_file/write_data/add_subdirectory/append_data/write_xattr

/write_attributes/write_acl/write_owner:deny
7:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example shows, when a new file is created, the ACL that allows read_data permission
is discarded.

touch test6.dir/file.6
ls -v test6.dir/file.6
-rw-r--r--+ 1 root root 0 May 4 13:44 test6.dir/file.6

0:user:gozer:read_data:deny
1:owner@:execute:deny
2:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow
3:group@:write_data/append_data/execute:deny
4:group@:read_data:allow
5:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny
6:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

132

7.4. Setting and Displaying ACLs on ZFS Files in Compact Format

7.4 Setting and Displaying ACLs on ZFS Files in Compact Format

You can set and display permissions on ZFS files in a compact format that uses 14 unique letters to
represent the permissions. The letters that represent the compact permissions are listed in Table 7.2 and
Table 7.3.

You can display compact ACL listings for files and directories by using the ls -V command. For example:

ls -V file.1
-rw-r--r-- 1 root root 206663 Feb 16 11:00 file.1

owner@:--x-----------:------:deny
owner@:rw-p---A-W-Co-:------:allow
group@:-wxp----------:------:deny
group@:r-------------:------:allow

everyone@:-wxp---A-W-Co-:------:deny
everyone@:r-----a-R-c--s:------:allow

The compact ACL output is described as follows:

owner@
The owner is denied execute permissions to the file (x=execute).

owner@
The owner can read and modify the contents of the file (rw=read_data/write_data), (p=app
end_data). The owner can also modify the file’s attributes such as timestamps, extended at-
tributes, and ACLs (A=write_xattr, W=write_attributes, C=write_acl). In addition,
the owner can modify the ownership of the file (O=write_owner).

group@
The group is denied modify and execute permissions to the file (rw=read_data/write_data,
p=append_data, and x=execute).

group@
The group is granted read permissions to the file (r=read_data).

everyone@
Everyone who is not user or group is denied permission to execute or modify the contents of the
file, and to modify any attributes of the file (w=write_data, x=execute, p=append_data,
A=write_xattr, W=write_attributes, C=write_acl, and o=write_owner).

everyone@
Everyone who is not user or group is granted read permissions to the file and the file’s attributes
(r=read_data,a=append_data,R=read_xattr,c=read_acl, and s=synchronize).
The synchronize access permission is not currently implemented.

Compact ACL format provides the following advantages over verbose ACL format:

• Permissions can be specified as positional arguments to the chmod command.

• The hyphen (-) characters, which identify no permissions, can be removed and only the required letters
need to be specified.

133

7. USING ACLS TO PROTECT ZFS FILES

• Both permissions and inheritance flags are set in the same fashion.

For information about using the verbose ACL format, see Section 7.3.

Example 7.10: Setting and Displaying ACLs in Compact Format

In the following example, a trivial ACL exists on file.1:

ls -V file.1
-rw-r-xr-x 1 root root 206663 Feb 16 11:00 file.1

owner@:--x-----------:------:deny
owner@:rw-p---A-W-Co-:------:allow
group@:-w-p----------:------:deny
group@:r-x-----------:------:allow

everyone@:-w-p---A-W-Co-:------:deny
everyone@:r-x---a-R-c--s:------:allow

In this example, read_data/execute permissions are added for the user gozer on file.1.

chmod A+user:gozer:rx:allow file.1
ls -V file.1
-rw-r-xr-x+ 1 root root 206663 Feb 16 11:00 file.1

user:gozer:r-x-----------:------:allow
owner@:--x-----------:------:deny
owner@:rw-p---A-W-Co-:------:allow
group@:-w-p----------:------:deny
group@:r-x-----------:------:allow

everyone@:-w-p---A-W-Co-:------:deny
everyone@:r-x---a-R-c--s:------:allow

Another way to add the same permissions for user gozer is to insert a new ACL at a specific position, 4,
for example. As such, the existing ACLs at positions 4–6 are pushed down. For example:

chmod A4+user:gozer:rx:allow file.1
ls -V file.1
-rw-r-xr-x+ 1 root root 206663 Feb 16 11:00 file.1

owner@:--x-----------:------:deny
owner@:rw-p---A-W-Co-:------:allow
group@:-w-p----------:------:deny
group@:r-x-----------:------:allow

user:gozer:r-x-----------:------:allow
everyone@:-w-p---A-W-Co-:------:deny
everyone@:r-x---a-R-c--s:------:allow

In the following example, user gozer is granted read, write, and execute permissions that are inherited
for newly created files and directories by using the compact ACL format.

chmod A+user:gozer:rwx:fd:allow dir.2
ls -dV dir.2
drwxr-xr-x+ 2 root root 2 Aug 28 13:21 dir.2

user:gozer:rwx-----------:fd----:allow
owner@:--------------:------:deny
owner@:rwxp---A-W-Co-:------:allow
group@:-w-p----------:------:deny
group@:r-x-----------:------:allow

everyone@:-w-p---A-W-Co-:------:deny
everyone@:r-x---a-R-c--s:------:allow

You can also cut and paste permissions and inheritance flags from the ls -V output into the compact
chmod format. For example, to duplicate the permissions and inheritance flags on dir.1 for user gozer

134

7.4. Setting and Displaying ACLs on ZFS Files in Compact Format

to user cindys, copy and paste the permission and inheritance flags (rwx-----------:f-----:
allow) into your chmod command. For example:

chmod A+user:cindys:rwx-----------:fd----:allow dir.2
ls -dv dir.2
drwxr-xr-x+ 2 root root 2 Aug 28 14:12 dir.2

user:cindys:rwx-----------:fd----:allow
user:gozer:rwx-----------:fd----:allow

owner@:--------------:------:deny
owner@:rwxp---A-W-Co-:------:allow
group@:-w-p----------:------:deny
group@:r-x-----------:------:allow

everyone@:-w-p---A-W-Co-:------:deny
everyone@:r-x---a-R-c--s:------:allow

135

Chapter 8

ZFS Delegated Administration

This chapter describes how to use delegated administration to allow non-privileged users to perform ZFS
administration tasks.

• Section 8.1

• Section 8.2

• Section 8.3

• Section 8.3

• Section 8.3

8.1 Overview of ZFS Delegated Administration

This feature enables you to distribute fine-grained permissions to specific users, groups, or everyone. Two
styles of delegated permissions are supported:

• Individual permissions can be explicitly specified such a create, destroy, mount and snapshot, and so on.

• Groups of permissions called permission sets can be defined. A permission set can later be updated and
all of the consumers of the set automatically pick up the change. Permission sets begin with the @ letter
and are limited to 64 characters in length. After the @ character, the remaining characters in the set name
have the same restrictions as normal ZFS file system names.

ZFS delegated administration provides similar features to the RBAC security. However, ZFS delegated
administration provides the following advantages for administering ZFS storage pools and file systems:

• Permissions follow the ZFS storage pool when the pool is migrated.

• Provides dynamic inheritance and you can control how the permissions propagate through the file
systems.

• Can be configured so that only the creator of a file system can destroy the file systems they create.

137

8. ZFS DELEGATED ADMINISTRATION

• Permissions can be distributed to specific file systems. Newly created file systems can automatically
pick up permissions.

• Provides simple NFS administration. For example, a user with explicit permissions could create a
snapshot over NFS in the appropriate .zfs/snapshot directory.

Consider using delegated administration for distributing ZFS tasks. For information about using RBAC to
manage general Solaris administration tasks, see Part III, Roles, Rights Profiles, and Privileges, in System
Administration Guide: Security Services.

Disabling ZFS Delegated Permissions

You can modify the ability to use delegated administration with the pool’s delegation property. For
example:

zpool get delegation users
NAME PROPERTY VALUE SOURCE
users delegation on default
zpool set delegation=off users
zpool get delegation users
NAME PROPERTY VALUE SOURCE
users delegation off local

By default, the delegation property is enabled.

8.2 Delegating ZFS Permissions

You can use the zfs allow command to grant permissions on ZFS datasets to non-root users in the following
ways:

• Individual permissions can be granted to a user, group, or everyone.

• Groups of individual permissions can be granted as a permission set to a user, group, or everyone.

• Permissions can be granted either locally, which is to the current dataset only, or granted to all descendents
of the current dataset.

The following table describes the operations that can be delegated and any dependent permissions that are
required to do the delegated operations.

Permission
(Subcommand) Description Dependencies

allow
The ability to grant permissions that
you have to another user.

Must also have the permission that is
being allowed.

clone
The ability to clone any of the
dataset’s snapshots.

Must also have the create ability
and the mount ability in the origin
file system.

create
The ability to create descendent
datasets.

Must also have the mount ability.

destroy The ability to destroy a dataset. Must also have the mount ability.

138

8.2. Delegating ZFS Permissions

Permission
(Subcommand) Description Dependencies

mount
The ability to mount and unmount a
dataset and create and destroy
volume device links.

promote
The ability to promote a clone to a
dataset.

Must also have the mount ability and
promote ability in the origin file
system.

receive
The ability to create descendent file
system with the zfs
receivecommand.

Must also have the mount ability and
the create ability.

rename The ability to rename a dataset.
Must also have the mount ability and
the create ability in the new parent.

rollback The ability to rollback a snapshot. Must also have the mount ability.

send
The ability to send a snapshot
stream.

share
The ability to share and unshare a
dataset.

snapshot
The ability to take a snapshot of a
dataset.

In addition, you can delegate the following ZFS properties to non-root users:

• aclinherit

• aclmode

• atime

• canmount

• casesensitivity

• checksum

• compression

• copies

• exec

• devices

• mountpoint

• nbmand

• normalization

• quota

• readonly

• recordsize

139

8. ZFS DELEGATED ADMINISTRATION

• reservation

• setuid

• shareiscsi

• sharenfs

• sharesmb

• snapdir

• userprop

• utf8only

• version

• volsize

• vscan

• xattr

• zoned

Some of the properties listed above can only set at dataset creation time. For a description of these
properties, see Section 5.2.

Syntax Descriptions for Delegating Permissions

The zfs allow syntax is as follows:

zfs allow -[l d u g e c s] everyone|user|group[,,...] perm|@setname ,...] filesystem| volume

The following zfs allow syntax (in bold) identifies to whom the permissions are delegated:

zfs allow [-uge] | user | group | everyone [,...] filesystem | volume

Multiple entities can be specified as a comma-separated list. If none of the -uge options are specified,
then the argument is interpreted preferentially as the keyword everyone, then as a user name, and lastly,
as a group name. To specify a user or group named “everyone,” use the -u or -g options. To specify a
group with the same name as a user, use the -g option.

The following zfs allow syntax (in bold) identifies how permissions and permission sets are specified:

zfs allow [-s] ... perm | @setname [,...] filesystem | volume

Multiple permissions can be specified as a comma-separated list. Permission names are the same as ZFS
subcommands and properties. For more information, see the section above.

Permissions can be aggregated into permissions sets and are identified by the -s option. Permission
sets can be used by other zfs allow commands for the specified file system and its descendents. Sets are
evaluated dynamically, so changes to a set are immediately updated. Permission sets follow the same
naming conventions as ZFS file systems, but the name must begin with an at sign (@), and can be no more
than 64 characters long.

The following zfs allow syntax (in bold) identifies how the permissions are delegated:

140

8.3. Using ZFS Delegated Administration

zfs allow [-ld] filesystem | volume

The -l option identifies if whether the permission is allowed for the specified dataset and not its descen-
dents, unless the -d option is also specified. The -d option indicates that the permission is allowed for
the descendent datasets and not for this dataset, unless the -l option is also specified. If neither of the
-ld options are specified, then the permissions are allowed for the file system or volume and all of its
descendents.

Removing ZFS Delegated Permissions (zfs unallow)

You can remove previously granted permissions with the zfs unallow command.

For example, if you delegated create, destroy, mount, and snapshot permissions as follows:

zfs allow cindys, create,destroy,mount,snapshot tank/cindys
zfs allow tank/cindys

Local+Descendent permissions on (tank/cindys)

user cindys create,destroy,mount,snapshot

You would need to use syntax similar to the following to remove these permissions:

zfs unallow cindys tank/cindys
zfs allow tank/cindys

8.3 Using ZFS Delegated Administration

This section provides examples of displaying and delegating permissions.

Displaying ZFS Delegated Permissions (Examples)

You can use the following command to display permissions:

zfs allow dataset

The above command prints permissions that are set or allowed on this dataset. The output contains the
following components:

• Permissions sets

• Specific permissions or create time permissions

• Local

• Local and descendent

• Descendent only

141

8. ZFS DELEGATED ADMINISTRATION

Example 8.1: Displaying Simple Delegated Administration Permissions

The following example output indicates that user cindys has permission to create, destroy, mount,
snapshot in the tank/cindys file system.

zfs allow tank/cindys

Local+Descendent permissions on (tank/cindys)

user cindys create,destroy,mount,snapshot

Example 8.2: Displaying Complex Delegated Administration Permissions

The following example output indicates the following permissions on the pool and pool/fred file
systems.
For the pool/fred file system:

• Two permission sets are defined:

– @eng (create, destroy, snapshot, mount, clone, promote, rename)

– @simple (create, mount)

• Create time permissions are set for the @eng permission set and the mountpoint property. Create
time means that after a dataset set is created, the @eng permission set and the mountpoint property
are granted.

• User tom is granted the @eng permission set and the user joe is granted create, destroy, mount
permissions for local file systems.

• User fred is granted the @basic permission set and share and rename permissions for the local and
descendent file systems.

• User barney is granted the @basic permission set for descendent file systems only.

For the pool file system:

• The permission set @simple (create, destroy, mount) is defined.

• The group staff is granted the @simple permission set on the local file system.

$ zfs allow pool/fred
--
Permission sets on (pool/fred)

@eng create,destroy,snapshot,mount,clone,promote,rename
@simple create,mount

Create time permissions on (pool/fred)
@eng,mountpoint

Local permissions on (pool/fred)
user tom @eng
user joe create,destroy,mount

Local+Descendent permissions on (pool/fred)
user fred @basic,share,rename

Descendent permissions on (pool/fred)
user barney @basic
group staff @basic

142

8.3. Using ZFS Delegated Administration

--
Permission sets on (pool)

@simple create,destroy,mount
Local permissions on (pool)

group staff @simple
--

Delegating ZFS Permissions (Examples)

Example 8.3: Delegating Permissions to an Individual User

When you provide create and mount permissions, you need to make sure that the user has permissions on
the underlying mount point.
For example, to give marks create and mount permissions on tank, set the permissions first:
chmod A+user:marks:add_subdirectory:fd:allow /tank

Then, use the zfs allow to grant create, destroy, and mount permissions. For example:
zfs allow marks create,destroy,mount tank

This means that marks can create his own file systems in the tank file system. For example:
su marks
marks$ zfs create tank/marks
marks$ ^D
su lp
$ zfs create tank/lp
cannot create ’tank/lp’: permission denied

Example 8.4: Delegating Create and Destroy Permissions to a Group

The following example shows how to set up a file system so that anyone in the staff group can create
and mount file systems in the tank file system, and also allows them to destroy their own file systems.
However, staff group members cannot destroy anyone else’s file systems.
zfs allow staff create,mount tank
zfs allow -c create,destroy tank
zfs allow tank

Create time permissions on (tank)

create,destroy
Local+Descendent permissions on (tank)

group staff create,mount

su cindys
cindys% zfs create tank/cindys
cindys% exit
su marks
marks% zfs create tank/marks/data
marks% exit
cindys% zfs destroy tank/marks/data
cannot destroy ’tank/mark’: permission denied

143

8. ZFS DELEGATED ADMINISTRATION

Example 8.5: Delegating Permissions at the Right File System Level

Make sure to grant users permission at the right file system level. User marks is granted create, destroy,
and mount permissions for the local and descendent file systems. User marks is granted local permission
to snapshot the tank file system, but this does not allow him to snapshot his own file system.

zfs allow -l marks snapshot tank
zfs allow tank

Local permissions on (tank)

user marks snapshot
Local+Descendent permissions on (tank)

user marks create,destroy,mount

su marks
marks$ zfs snapshot tank/@snap1
marks$ zfs snapshot tank/marks@snap1
cannot create snapshot ’mark/marks@snap1’: permission denied

Use the zfs allow -d option to grant marks permission at the descendent level. For example:

zfs unallow -l marks snapshot tank
zfs allow -d marks snapshot tank
zfs allow tank

Descendent permissions on (tank)

user marks snapshot
Local+Descendent permissions on (tank)

user marks create,destroy,mount

su marks
$ zfs snapshot tank@snap2
cannot create snapshot ’sandbox@snap2’: permission denied
$ zfs snapshot tank/marks@snappy

User marks can only create a snapshot below the tank level.

Example 8.6: Defining and Using Complex Delegated Permissions

You can grant specific permissions to users or groups. For example, the following zfs allow command
grants specific permissions to the staff group. In addition, destroy and snapshot permissions are granted
after tank file systems are created.

zfs allow staff create,mount tank
zfs allow tank

Create time permissions on (tank)

destroy,snapshot
Local+Descendent permissions on (tank)

group staff create

Because marks is a member of the staff group, he can create file systems in tank. In addition, user
marks can create a snapshot of tank/marks2 because he has specific permissions. For example:

su marks
$ zfs create tank/marks2
$ zfs allow tank/marks2

144

8.3. Using ZFS Delegated Administration

Local permissions on (tank/marks2)

user marks destroy,snapshot

Create time permissions on (tank)

destroy,snapshot
Local+Descendent permissions on (tank)

group staff create
everyone mount

But, he can’t create a snapshot in tank/marks because he doesn’t have specific permissions. See the
listing above. For example:

$ zfs snapshot tank/marks2@snap1
$ zfs snapshot tank/marks@snappp
cannot create snapshot ’tank/marks@snappp’: permission denied

You can create snapshot directories if you have create permission in your home directory, for example.
This is helpful when your file system is NFS mounted. For example:

$ cd /tank/marks2
$ ls
$ cd .zfs
$ ls
snapshot
$ cd snapshot
$ ls -l
total 3
drwxr-xr-x 2 marks staff 2 Dec 15 13:53 snap1
$ pwd
/tank/marks2/.zfs/snapshot
$ mkdir snap2
$ zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank 264K 33.2G 33.5K /tank
tank/marks 24.5K 33.2G 24.5K /tank/marks
tank/marks2 46K 33.2G 24.5K /tank/marks2
tank/marks2@snap1 21.5K - 24.5K -
tank/marks2@snap2 0 - 24.5K -
$ ls
snap1 snap2
$ rmdir snap2
$ ls
snap1

Example 8.7: Defining and Using a ZFS Delegated Permission Set

The following example creates a permission set @myset and grants the permission set and the rename
permission to the group staff for the tank file system. User cindys, a group staff member, has
the ability to create a file system in tank but user lp has no permission to create a file system in tank.

zfs allow -s @myset create,destroy,mount,snapshot,promote,clone,readonly tank
zfs allow tank

Permission sets on (tank)

@myset clone,create,destroy,mount,promote,readonly,snapshot

145

8. ZFS DELEGATED ADMINISTRATION

zfs allow staff @myset,rename tank
zfs allow tank

Permission sets on (tank)

@myset clone,create,destroy,mount,promote,readonly,snapshot
Local+Descendent permissions on (tank)

group staff @myset,rename
chmod A+group:staff:add_subdirectory:fd:allow tank
su cindys
cindys% zfs create tank/data
Cindys% zfs allow tank

Permission sets on (tank)

@myset clone,create,destroy,mount,promote,readonly,snapshot
Local+Descendent permissions on (tank)

group staff @myset,rename

cindys% ls -l /tank
total 15
drwxr-xr-x 2 cindys staff 2 Aug 8 14:10 data
cindys% exit
su lp
$ zfs create tank/lp
cannot create ’tank/lp’: permission denied

Removing ZFS Permission (Examples)

You can use the following command to remove granted permissions. For example, user cindys has
permission to create, mount, destroy, and snapshot in the tank/cindys file system.

zfs allow cindys create,destroy,mount,snapshot tank/cindys
zfs allow tank/cindys

Local+Descendent permissions on (tank/cindys)

user cindys create,destroy,mount,snapshot

This zfs unallow syntax removes user cindys’s snapshot permission from the tank/cindys file
system.

zfs unallow cindys snapshot tank/cindys
zfs allow tank/cindys

Local+Descendent permissions on (tank/cindys)

user cindys create,destroy,mount

cindys% zfs create tank/cindys/data
cindys% zfs snapshot tank/cindys@today
cannot create snapshot ’tank/cindys@today’: permission denied

User marks has the following permissions in tank/marks.

zfs allow tank/marks

Local+Descendent permissions on (tank/marks)

user marks create,destroy,mount

146

8.3. Using ZFS Delegated Administration

The following zfs unallow syntax removes all permissions for user marks from tank/marks.

zfs unallow marks tank/marks

The following zfs unallow syntax removes a permission set on the tank file system.

zfs allow tank

Permission sets on (tank)

@myset clone,create,destroy,mount,promote,readonly,snapshot
Create time permissions on (tank)

create,destroy,mount
Local+Descendent permissions on (tank)

group staff create,mount

zfs unallow -s @myset tank
$ zfs allow tank

Create time permissions on (tank)

create,destroy,mount
Local+Descendent permissions on (tank)

group staff create,mount

147

Chapter 9

ZFS Advanced Topics

This chapter describes ZFS volumes, using ZFS with zones, ZFS alternate root pools, and ZFS rights
profiles.

The following sections are provided in this chapter:

• Section 9.1

• Section 9.2

• Section 9.3

• Section 9.4

9.1 ZFS Volumes

A ZFS volume is a dataset that represents a block device and can be used like any block device. ZFS
volumes are identified as devices in the /dev/zvol/{dsk,rdsk}/path directory.

In the following example, 5-Gbyte ZFS volume, tank/vol, is created:

zfs create -V 5gb tank/vol

When you create a volume, a reservation is automatically set to the initial size of the volume. The
reservation size continues to equal the size of the volume so that unexpected behavior doesn’t occur.
For example, if the size of the volume shrinks, data corruption might occur. You must be careful when
changing the size of the volume.

In addition, if you create a snapshot of a volume that changes in size, you might introduce file system
inconsistencies if you attempt to rollback the snapshot or create a clone from the snapshot.

For information about file system properties that can be applied to volumes, see Table 5.1.

If you are using a system configured to use zones, you cannot create or clone a ZFS volume in a non-global
zone. Any attempt to do so will fail. For information about using ZFS volumes in a global zone, see
Section 9.2.

149

9. ZFS ADVANCED TOPICS

Using a ZFS Volume as a Swap or Dump Device

To set up a swap area, create a ZFS volume of a specific size and then enable swap on that device. Do not
swap to a file on a ZFS file system. A ZFS swap file configuration is not supported.

In the following example, the 5-Gbyte tank/vol volume is added as a swap device.

swap -a /dev/zvol/dsk/tank/vol
swap -l
swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 32,33 16 1048688 1048688
/dev/zvol/dsk/tank/vol 254,1 16 10485744 10485744

Using a ZFS volume as a dump device is not supported. Use the dumpadm command to set up a dump
device.

Using a ZFS Volume as a Solaris iSCSI Target

Solaris iSCSI targets and initiators are supported in the Solaris release.

In addition, you can easily create a ZFS volume as a iSCSI target by setting the shareiscsi property
on the volume. For example:

zfs create -V 2g tank/volumes/v2
zfs set shareiscsi=on tank/volumes/v2
iscsitadm list target
Target: tank/volumes/v2

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a
Connections: 0

After the iSCSI target is created, set up the iSCSI initiator. For more information about Solaris iSCSI
targets and initiators, see Chapter 14, Configuring Solaris iSCSI Targets and Initiators (Tasks), in System
Administration Guide: Devices and File Systems.

Note
Solaris iSCSI targets can also be created and managed with iscsitadm command. If you set the
shareiscsi property on a ZFS volume, do not use the iscsitadm command to also create the same
target device. Otherwise, you will end up with duplicate target information for the same device.

A ZFS volume as an iSCSI target is managed just like another ZFS dataset. However, the rename, export,
and import operations work a little differently for iSCSI targets.

• When you rename a ZFS volume, the iSCSI target name remains the same. For example:

zfs rename tank/volumes/v2 tank/volumes/v1
iscsitadm list target
Target: tank/volumes/v1

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a
Connections: 0

• Exporting a pool that contains a shared ZFS volume causes the target to be removed. Importing a pool
that contains a shared ZFS volume causes the target to be shared. For example:

150

9.2. Using ZFS With Zones

zpool export tank
iscsitadm list target
zpool import tank
iscsitadm list target
Target: tank/volumes/v1

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a
Connections: 0

All iSCSI target configuration information is stored within the dataset. Like an NFS shared file system, an
iSCSI target that is imported on a different system is shared appropriately.

9.2 Using ZFS With Zones

The following sections describe how to use ZFS with zones.

• Section 9.2

• Section 9.2

• Section 9.2

• Section 9.2

• Section 9.2

• Section 9.2

Keep the following points in mind when associating ZFS datasets with zones:

• You can add a ZFS file system or a ZFS clone to a non-global with or without delegating administrative
control.

• You can add a ZFS volume as a device to non-global zones

• You cannot associate ZFS snapshots with zones at this time

• Do not use a ZFS file system for a global zone root path or a non-global zone root path in the Solaris
10 releases. You can use ZFS as a zone root path in the Solaris Express releases, but keep in mind that
patching or upgrading these zones is not supported.

In the sections below, a ZFS dataset refers to a file system or clone.

Adding a dataset allows the non-global zone to share space with the global zone, though the zone
administrator cannot control properties or create new file systems in the underlying file system hierarchy.
This is identical to adding any other type of file system to a zone, and should be used when the primary
purpose is solely to share common space.

ZFS also allows datasets to be delegated to a non-global zone, giving complete control over the dataset
and all its children to the zone administrator. The zone administrator can create and destroy file systems or
clones within that dataset, and modify properties of the datasets. The zone administrator cannot affect
datasets that have not been added to the zone, and cannot exceed any top-level quotas set on the exported
dataset.

Consider the following interactions when working with ZFS on a system configured to use zones:

151

9. ZFS ADVANCED TOPICS

• A ZFS file system that is added to a non-global zone must have its mountpoint property set to legacy.

• When a source zonepath and the target zonepath both reside on ZFS and are in the same pool,
zoneadm clone will now automatically use ZFS clone to clone a zone. The zoneadm clone command
will take a ZFS snapshot of the source zonepath and set up the target zonepath. You cannot use the
zfs clone command to clone a zone. For more information, see Part II, Zones, in System Administration
Guide: Virtualization Using the Solaris Operating System.

Adding ZFS File Systems to a Non-Global Zone

You can add a ZFS file system as a generic file system when the goal is solely to share space with the
global zone. A ZFS file system that is added to a non-global zone must have its mountpoint property
set to legacy.

You can add a ZFS file system to a non-global zone by using the zonecfg command’s add fs subcom-
mand. For example:

In the following example, a ZFS file system is added to a non-global zone by a global administrator in the
global zone.
zonecfg -z zion
zonecfg:zion> add fs
zonecfg:zion:fs> set type=zfs
zonecfg:zion:fs> set special=tank/zone/zion
zonecfg:zion:fs> set dir=/export/shared
zonecfg:zion:fs> end

This syntax adds the ZFS file system, tank/zone/zion, to the already configured zion zone, mounted
at /export/shared. The mountpoint property of the file system must be set to legacy, and the file
system cannot already be mounted in another location. The zone administrator can create and destroy
files within the file system. The file system cannot be remounted in a different location, nor can the zone
administrator change properties on the file system such as atime, readonly, compression, and so on. The
global zone administrator is responsible for setting and controlling properties of the file system.

For more information about the zonecfg command and about configuring resource types with zonecfg,
see Part II, Zones, in System Administration Guide: Virtualization Using the Solaris Operating System.

Delegating Datasets to a Non-Global Zone

If the primary goal is to delegate the administration of storage to a zone, then ZFS supports adding datasets
to a non-global zone through use of the zonecfg command’s add dataset subcommand.

In the following example, a ZFS file system is delegated to a non-global zone by a global administrator in
the global zone.
zonecfg -z zion
zonecfg:zion> add dataset
zonecfg:zion:dataset> set name=tank/zone/zion
zonecfg:zion:dataset> end

Unlike adding a file system, this syntax causes the ZFS file system tank/zone/zion to be visible
within the already configured zion zone. The zone administrator can set file system properties, as well
as create children. In addition, the zone administrator can take snapshots, create clones, and otherwise
control the entire file system hierarchy.

For more information about what actions are allowed within zones, see Section 9.2.

152

9.2. Using ZFS With Zones

Adding ZFS Volumes to a Non-Global Zone

ZFS volumes cannot be added to a non-global zone by using the zonecfg command’s add dataset
subcommand. If an attempt to add an ZFS volume is detected, the zone cannot boot. However, volumes
can be added to a zone by using the zonecfg command’s add device subcommand.

In the following example, a ZFS volume is added to a non-global zone by a global administrator in the
global zone:

zonecfg -z zion
zion: No such zone configured
Use ’create’ to begin configuring a new zone.
zonecfg:zion> create
zonecfg:zion> add device
zonecfg:zion:device> set match=/dev/zvol/dsk/tank/vol
zonecfg:zion:device> end

This syntax exports the tank/vol volume to the zone. Note that adding a raw volume to a zone has
implicit security risks, even if the volume doesn’t correspond to a physical device. In particular, the zone
administrator could create malformed file systems that would panic the system when a mount is attempted.
For more information about adding devices to zones and the related security risks, see Section 9.2.

For more information about adding devices to zones, see Part II, Zones, in System Administration Guide:
Virtualization Using the Solaris Operating System.

Using ZFS Storage Pools Within a Zone

ZFS storage pools cannot be created or modified within a zone. The delegated administration model
centralizes control of physical storage devices within the global zone and control of virtual storage to non-
global zones. While a pool-level dataset can be added to a zone, any command that modifies the physical
characteristics of the pool, such as creating, adding, or removing devices, is not allowed from within
a zone. Even if physical devices are added to a zone by using the zonecfg command’s add device
subcommand, or if files are used, the zpool command does not allow the creation of any new pools within
the zone.

Managing ZFS Properties Within a Zone

After a dataset is added to a zone, the zone administrator can control specific dataset properties. When
a dataset is added to a zone, all its ancestors are visible as read-only datasets, while the dataset itself is
writable as are all of its children. For example, consider the following configuration:

global# zfs list -Ho name
tank
tank/home
tank/data
tank/data/matrix
tank/data/zion
tank/data/zion/home

If tank/data/zion is added to a zone, each dataset would have the following properties.

153

9. ZFS ADVANCED TOPICS

Dataset Visible Writable Immutable
Properties

tank Yes No -
tank/home No - -
tank/data Yes No -
tank/data/
matrix

No - -

tank/data/zion Yes Yes
sharenfs, zoned, quota,
reservation

tank/data/zion/
home

Yes Yes sharenfs, zoned

Note that every parent of tank/zone/zion is visible read-only, all children are writable, and datasets
that are not part of the parent hierarchy are not visible at all. The zone administrator cannot change the
sharenfs property, because non-global zones cannot act as NFS servers. Neither can the zone administrator
change the zoned property, because doing so would expose a security risk as described in the next
section.

Any other settable property can be changed, except for the quota property, and the dataset itself. This
behavior allows the global zone administrator to control the space consumption of all datasets used by the
non-global zone.

In addition, the sharenfs and mountpoint properties cannot be changed by the global zone administrator
once a dataset has been added to a non-global zone.

Understanding the zoned Property

When a dataset is added to a non-global zone, the dataset must be specially marked so that certain
properties are not interpreted within the context of the global zone. After a dataset has been added to a
non-global zone under the control of a zone administrator, its contents can no longer be trusted. As with
any file system, there might be setuid binaries, symbolic links, or otherwise questionable contents that
might adversely affect the security of the global zone. In addition, the mountpoint property cannot be
interpreted in the context of the global zone. Otherwise, the zone administrator could affect the global
zone’s namespace. To address the latter, ZFS uses the zoned property to indicate that a dataset has been
delegated to a non-global zone at one point in time.

The zoned property is a boolean value that is automatically turned on when a zone containing a ZFS dataset
is first booted. A zone administrator will not need to manually turn on this property. If the zoned property
is set, the dataset cannot be mounted or shared in the global zone, and is ignored when the zfs share -a
command or the zfs mount -a command is executed. In the following example, tank/zone/zion has
been added to a zone, while tank/zone/global has not:

zfs list -o name,zoned,mountpoint -r tank/zone
NAME ZONED MOUNTPOINT
tank/zone/global off /tank/zone/global
tank/zone/zion on /tank/zone/zion
zfs mount
tank/zone/global /tank/zone/global
tank/zone/zion /export/zone/zion/root/tank/zone/zion

154

9.3. Using ZFS Alternate Root Pools

Note the difference between the mountpoint property and the directory where the tank/zone/zion
dataset is currently mounted. The mountpoint property reflects the property as stored on disk, not where
the dataset is currently mounted on the system.

When a dataset is removed from a zone or a zone is destroyed, the zoned property is not automatically
cleared. This behavior is due to the inherent security risks associated with these tasks. Because an untrusted
user has had complete access to the dataset and its children, the mountpoint property might be set to bad
values, or setuid binaries might exist on the file systems.

To prevent accidental security risks, the zoned property must be manually cleared by the global adminis-
trator if you want to reuse the dataset in any way. Before setting the zoned property to off, make sure
that the mountpoint property for the dataset and all its children are set to reasonable values and that no
setuid binaries exist, or turn off the setuid property.

After you have verified that no security vulnerabilities are left, the zoned property can be turned off by
using the zfs set or zfs inherit commands. If the zoned property is turned off while a dataset is in use
within a zone, the system might behave in unpredictable ways. Only change the property if you are sure
the dataset is no longer in use by a non-global zone.

9.3 Using ZFS Alternate Root Pools

When a pool is created, the pool is intrinsically tied to the host system. The host system maintains
knowledge about the pool so that it can detect when the pool is otherwise unavailable. While useful for
normal operation, this knowledge can prove a hindrance when booting from alternate media, or creating a
pool on removable media. To solve this problem, ZFS provides an alternate root pool feature. An alternate
root pool does not persist across system reboots, and all mount points are modified to be relative to the
root of the pool.

Creating ZFS Alternate Root Pools

The most common use for creating an alternate root pool is for use with removable media. In these
circumstances, users typically want a single file system, and they want it to be mounted wherever they
choose on the target system. When an alternate root pool is created by using the -R option, the mount
point of the root file system is automatically set to /, which is the equivalent of the alternate root itself.

In the following example, a pool called morpheus is created with /mnt as the alternate root path:

zpool create -R /mnt morpheus c0t0d0
zfs list morpheus
NAME USED AVAIL REFER MOUNTPOINT
morpheus 32.5K 33.5G 8K /mnt/

Note the single file system, morpheus, whose mount point is the alternate root of the pool, /mnt. The
mount point that is stored on disk is / and the full path to /mnt is interpreted only in the context of the
alternate root pool. This file system can then be exported and imported under an arbitrary alternate root
pool on a different system.

Importing Alternate Root Pools

Pools can also be imported using an alternate root. This feature allows for recovery situations, where
the mount points should not be interpreted in context of the current root, but under some temporary

155

9. ZFS ADVANCED TOPICS

directory where repairs can be performed. This feature also can be used when mounting removable media
as described above.

In the following example, a pool called morpheus is imported with /mnt as the alternate root path. This
example assumes that morpheus was previously exported.

zpool import -R /mnt morpheus
zpool list morpheus
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
morpheus 33.8G 68.0K 33.7G 0% ONLINE /mnt
zfs list morpheus
NAME USED AVAIL REFER MOUNTPOINT
morpheus 32.5K 33.5G 8K /mnt/morpheus

9.4 ZFS Rights Profiles

If you want to perform ZFS management tasks without using the superuser (root) account, you can assume
a role with either of the following profiles to perform ZFS administration tasks:

• ZFS Storage Management – Provides the ability to create, destroy, and manipulate devices within a ZFS
storage pool

• ZFS File system Management – Provides the ability to create, destroy, and modify ZFS file systems

For more information about creating or assigning roles, see System Administration Guide: Security
Services.

In addition to using RBAC roles for administering ZFS file systems, you might also consider using ZFS
delegated administration for distributed ZFS administration tasks. For more information, see Chapter 8.

156

Chapter 10

ZFS Troubleshooting and Data Recovery

This chapter describes how to identify and recover from ZFS failure modes. Information for preventing
failures is provided as well.

The following sections are provided in this chapter:

• Section 10.1

• Section 10.2

• Section 10.3

• Section 10.4

• Section 10.5

• Section 10.6

• Section 10.7

• Section 10.8

10.1 ZFS Failure Modes

As a combined file system and volume manager, ZFS can exhibit many different failure modes. This
chapter begins by outlining the various failure modes, then discusses how to identify them on a running
system. This chapter concludes by discussing how to repair the problems. ZFS can encounter three basic
types of errors:

• Section 10.1

• Section 10.1

• Section 10.1

Note that a single pool can experience all three errors, so a complete repair procedure involves finding and
correcting one error, proceeding to the next error, and so on.

157

10. ZFS TROUBLESHOOTING AND DATA RECOVERY

Missing Devices in a ZFS Storage Pool

If a device is completely removed from the system, ZFS detects that the device cannot be opened and
places it in the FAULTED state. Depending on the data replication level of the pool, this might or might
not result in the entire pool becoming unavailable. If one disk in a mirrored or RAID-Z device is removed,
the pool continues to be accessible. If all components of a mirror are removed, if more than one device in
a RAID-Z device is removed, or if a single-disk, top-level device is removed, the pool becomes FAULTED.
No data is accessible until the device is reattached.

Damaged Devices in a ZFS Storage Pool

The term “damaged” covers a wide variety of possible errors. Examples include the following errors:

• Transient I/O errors due to a bad disk or controller

• On-disk data corruption due to cosmic rays

• Driver bugs resulting in data being transferred to or from the wrong location

• Simply another user overwriting portions of the physical device by accident

In some cases, these errors are transient, such as a random I/O error while the controller is having
problems. In other cases, the damage is permanent, such as on-disk corruption. Even still, whether the
damage is permanent does not necessarily indicate that the error is likely to occur again. For example, if
an administrator accidentally overwrites part of a disk, no type of hardware failure has occurred, and the
device need not be replaced. Identifying exactly what went wrong with a device is not an easy task and is
covered in more detail in a later section.

Corrupted ZFS Data

Data corruption occurs when one or more device errors (indicating missing or damaged devices) affects
a top-level virtual device. For example, one half of a mirror can experience thousands of device errors
without ever causing data corruption. If an error is encountered on the other side of the mirror in the exact
same location, corrupted data will be the result.

Data corruption is always permanent and requires special consideration during repair. Even if the under-
lying devices are repaired or replaced, the original data is lost forever. Most often this scenario requires
restoring data from backups. Data errors are recorded as they are encountered, and can be controlled
through routine disk scrubbing as explained in the following section. When a corrupted block is removed,
the next scrubbing pass recognizes that the corruption is no longer present and removes any trace of the
error from the system.

10.2 Checking ZFS Data Integrity

No fsck utility equivalent exists for ZFS. This utility has traditionally served two purposes, data repair
and data validation.

158

10.2. Checking ZFS Data Integrity

Data Repair

With traditional file systems, the way in which data is written is inherently vulnerable to unexpected failure
causing data inconsistencies. Because a traditional file system is not transactional, unreferenced blocks,
bad link counts, or other inconsistent data structures are possible. The addition of journaling does solve
some of these problems, but can introduce additional problems when the log cannot be rolled back. With
ZFS, none of these problems exist. The only way for inconsistent data to exist on disk is through hardware
failure (in which case the pool should have been redundant) or a bug in the ZFS software exists.

Given that the fsck utility is designed to repair known pathologies specific to individual file systems,
writing such a utility for a file system with no known pathologies is impossible. Future experience might
prove that certain data corruption problems are common enough and simple enough such that a repair
utility can be developed, but these problems can always be avoided by using redundant pools.

If your pool is not redundant, the chance that data corruption can render some or all of your data inaccessible
is always present.

Data Validation

In addition to data repair, the fsck utility validates that the data on disk has no problems. Traditionally,
this task is done by unmounting the file system and running the fsck utility, possibly taking the system to
single-user mode in the process. This scenario results in downtime that is proportional to the size of the
file system being checked. Instead of requiring an explicit utility to perform the necessary checking, ZFS
provides a mechanism to perform routine checking of all data. This functionality, known as scrubbing, is
commonly used in memory and other systems as a method of detecting and preventing errors before they
result in hardware or software failure.

Controlling ZFS Data Scrubbing

Whenever ZFS encounters an error, either through scrubbing or when accessing a file on demand, the error
is logged internally so that you can get a quick overview of all known errors within the pool.

Explicit ZFS Data Scrubbing

The simplest way to check your data integrity is to initiate an explicit scrubbing of all data within the
pool. This operation traverses all the data in the pool once and verifies that all blocks can be read.
Scrubbing proceeds as fast as the devices allow, though the priority of any I/O remains below that of
normal operations. This operation might negatively impact performance, though the file system should
remain usable and nearly as responsive while the scrubbing occurs. To initiate an explicit scrub, use the
zpool scrub command. For example:

zpool scrub tank

The status of the current scrub can be displayed in the zpool status output. For example:

zpool status -v tank
pool: tank

state: ONLINE
scrub: scrub completed with 0 errors on Wed Aug 30 14:02:24 2006

config:

159

10. ZFS TROUBLESHOOTING AND DATA RECOVERY

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror ONLINE 0 0 0
c1t0d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0

errors: No known data errors

Note that only one active scrubbing operation per pool can occur at one time.

You can stop a scrub that is in progress by using the -s option. For example:

zpool scrub -s tank

In most cases, a scrub operation to ensure data integrity should continue to completion. Stop a scrub at
your own discretion if system performance is impacted by a scrub operation.

Performing routine scrubbing also guarantees continuous I/O to all disks on the system. Routine scrubbing
has the side effect of preventing power management from placing idle disks in low-power mode. If the
system is generally performing I/O all the time, or if power consumption is not a concern, then this issue
can safely be ignored.

For more information about interpreting zpool status output, see Section 4.6.

ZFS Data Scrubbing and Resilvering

When a device is replaced, a resilvering operation is initiated to move data from the good copies to the
new device. This action is a form of disk scrubbing. Therefore, only one such action can happen at a
given time in the pool. If a scrubbing operation is in progress, a resilvering operation suspends the current
scrubbing, and restarts it after the resilvering is complete.

For more information about resilvering, see Section 10.6.

10.3 Identifying Problems in ZFS

The following sections describe how to identify problems in your ZFS file systems or storage pools.

• Section 10.3

• Section 10.3

• Section 10.3

You can use the following features to identify problems with your ZFS configuration:

• Detailed ZFS storage pool information with the zpool status command

• Pool and device failures are reported with ZFS/FMA diagnostic messages

• Previous ZFS commands that modified pool state information can be displayed with the zpool history
command

160

10.3. Identifying Problems in ZFS

Most ZFS troubleshooting is centered around the zpool status command. This command analyzes the
various failures in the system and identifies the most severe problem, presenting you with a suggested
action and a link to a knowledge article for more information. Note that the command only identifies a
single problem with the pool, though multiple problems can exist. For example, data corruption errors
always imply that one of the devices has failed. Replacing the failed device does not fix the data corruption
problems.

In addition, a ZFS diagnostic engine is provided to diagnose and report pool failures and device failures.
Checksum, I/O, device, and pool errors associated with pool or device failures are also reported. ZFS
failures as reported by fmd are displayed on the console as well as the system messages file. In most cases,
the fmd message directs you to the zpool status command for further recovery instructions.

The basic recovery process is as follows:

• If appropriate, use the zpool history command to identify the previous ZFS commands that led up to
the error scenario. For example:

zpool history
History for ’tank’:
2007-04-25.10:19:42 zpool create tank mirror c0t8d0 c0t9d0 c0t10d0
2007-04-25.10:19:45 zfs create tank/erick
2007-04-25.10:19:55 zfs set checksum=off tank/erick

Notice in the above output that checksums are disabled for the tank/erick file system. This configu-
ration is not recommended.

• Identify the errors through the fmd messages that are displayed on the system console or in the
/var/adm/messages files.

• Find further repair instructions in the zpool status -x command.

• Repair the failures, such as:

– Replace the faulted or missing device and bring it online.

– Restore the faulted configuration or corrupted data from a backup.

– Verify the recovery by using the zpool status -x command.

– Back up your restored configuration, if applicable.

This chapter describes how to interpret zpool status output in order to diagnose the type of failure and
directs you to one of the following sections on how to repair the problem. While most of the work is
performed automatically by the command, it is important to understand exactly what problems are being
identified in order to diagnose the type of failure.

Determining if Problems Exist in a ZFS Storage Pool

The easiest way to determine if any known problems exist on the system is to use the zpool status -x
command. This command describes only pools exhibiting problems. If no bad pools exist on the system,
then the command displays a simple message, as follows:

zpool status -x
all pools are healthy

161

10. ZFS TROUBLESHOOTING AND DATA RECOVERY

Without the -x flag, the command displays the complete status for all pools (or the requested pool, if
specified on the command line), even if the pools are otherwise healthy.

For more information about command-line options to the zpool status command, see Section 4.6.

Reviewing zpool status Output

The complete zpool status output looks similar to the following:

zpool status tank
pool: tank

state: DEGRADED
status: One or more devices has been taken offline by the administrator.

Sufficient replicas exist for the pool to continue functioning in a
degraded state.

action: Online the device using ’zpool online’ or replace the device with
’zpool replace’.

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0
c1t0d0 ONLINE 0 0 0
c1t1d0 OFFLINE 0 0 0

errors: No known data errors

This output is divided into several sections:

Overall Pool Status Information

This header section in the zpool status output contains the following fields, some of which are only
displayed for pools exhibiting problems:

pool
The name of the pool.

state
The current health of the pool. This information refers only to the ability of the pool to provide
the necessary replication level. Pools that are ONLINE might still have failing devices or data
corruption.

status
A description of what is wrong with the pool. This field is omitted if no problems are found.

action
A recommended action for repairing the errors. This field is an abbreviated form directing the user
to one of the following sections. This field is omitted if no problems are found.

see A reference to a knowledge article containing detailed repair information. Online articles are updated
more often than this guide can be updated, and should always be referenced for the most up-to-date
repair procedures. This field is omitted if no problems are found.

162

10.3. Identifying Problems in ZFS

scrub
Identifies the current status of a scrub operation, which might include the date and time that the last
scrub was completed, a scrub in progress, or if no scrubbing was requested.

errors
Identifies known data errors or the absence of known data errors.

Configuration Information

The config field in the zpool status output describes the configuration layout of the devices comprising
the pool, as well as their state and any errors generated from the devices. The state can be one of the
following: ONLINE, FAULTED, DEGRADED, UNAVAILABLE, or OFFLINE. If the state is anything but
ONLINE, the fault tolerance of the pool has been compromised.

The second section of the configuration output displays error statistics. These errors are divided into three
categories:

• READ – I/O error occurred while issuing a read request.

• WRITE – I/O error occurred while issuing a write request.

• CKSUM – Checksum error. The device returned corrupted data as the result of a read request.

These errors can be used to determine if the damage is permanent. A small number of I/O errors might
indicate a temporary outage, while a large number might indicate a permanent problem with the device.
These errors do not necessarily correspond to data corruption as interpreted by applications. If the device
is in a redundant configuration, the disk devices might show uncorrectable errors, while no errors appear
at the mirror or RAID-Z device level. If this scenario is the case, then ZFS successfully retrieved the good
data and attempted to heal the damaged data from existing replicas.

For more information about interpreting these errors to determine device failure, see Section 10.6.

Finally, additional auxiliary information is displayed in the last column of the zpool status output. This
information expands on the state field, aiding in diagnosis of failure modes. If a device is FAULTED,
this field indicates whether the device is inaccessible or whether the data on the device is corrupted. If the
device is undergoing resilvering, this field displays the current progress.

For more information about monitoring resilvering progress, see Section 10.6.

Scrubbing Status

The third section of the zpool status output describes the current status of any explicit scrubs. This
information is distinct from whether any errors are detected on the system, though this information can be
used to determine the accuracy of the data corruption error reporting. If the last scrub ended recently, most
likely, any known data corruption has been discovered.

For more information about data scrubbing and how to interpret this information, see Section 10.2.

163

10. ZFS TROUBLESHOOTING AND DATA RECOVERY

Data Corruption Errors

The zpool status command also shows whether any known errors are associated with the pool. These
errors might have been found during disk scrubbing or during normal operation. ZFS maintains a persistent
log of all data errors associated with the pool. This log is rotated whenever a complete scrub of the system
finishes.

Data corruption errors are always fatal. Their presence indicates that at least one application experienced
an I/O error due to corrupt data within the pool. Device errors within a redundant pool do not result in
data corruption and are not recorded as part of this log. By default, only the number of errors found is
displayed. A complete list of errors and their specifics can be found by using the zpool status -v option.
For example:

zpool status -v
pool: tank

state: DEGRADED
status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.
see: http://illumos.org/msg/ZFS-8000-8A

scrub: resilver completed with 1 errors on Fri Mar 17 15:42:18 2006
config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 1

mirror DEGRADED 0 0 1
c1t0d0 ONLINE 0 0 2
c1t1d0 UNAVAIL 0 0 0 corrupted data

errors: The following persistent errors have been detected:

DATASET OBJECT RANGE
5 0 lvl=4294967295 blkid=0

A similar message is also displayed by fmd on the system console and the /var/adm/messages file.
These messages can also be tracked by using the fmdump command.

For more information about interpreting data corruption errors, see Section 10.7.

System Reporting of ZFS Error Messages

In addition to persistently keeping track of errors within the pool, ZFS also displays syslog messages
when events of interest occur. The following scenarios generate events to notify the administrator:

• Device state transition – If a device becomes FAULTED, ZFS logs a message indicating that the fault
tolerance of the pool might be compromised. A similar message is sent if the device is later brought
online, restoring the pool to health.

• Data corruption – If any data corruption is detected, ZFS logs a message describing when and where
the corruption was detected. This message is only logged the first time it is detected. Subsequent accesses
do not generate a message.

• Pool failures and device failures – If a pool failure or device failure occurs, the fault manager daemon
reports these errors through syslog messages as well as the fmdump command.

164

10.4. Repairing a Damaged ZFS Configuration

If ZFS detects a device error and automatically recovers from it, no notification occurs. Such errors do not
constitute a failure in the pool redundancy or data integrity. Moreover, such errors are typically the result
of a driver problem accompanied by its own set of error messages.

10.4 Repairing a Damaged ZFS Configuration

ZFS maintains a cache of active pools and their configuration on the root file system. If this file is corrupted
or somehow becomes out of sync with what is stored on disk, the pool can no longer be opened. ZFS tries
to avoid this situation, though arbitrary corruption is always possible given the qualities of the underlying
file system and storage. This situation typically results in a pool disappearing from the system when it
should otherwise be available. This situation can also manifest itself as a partial configuration that is
missing an unknown number of top-level virtual devices. In either case, the configuration can be recovered
by exporting the pool (if it is visible at all), and re-importing it.

For more information about importing and exporting pools, see Section 4.7.

10.5 Repairing a Missing Device

If a device cannot be opened, it displays as UNAVAILABLE in the zpool status output. This status means
that ZFS was unable to open the device when the pool was first accessed, or the device has since become
unavailable. If the device causes a top-level virtual device to be unavailable, then nothing in the pool can
be accessed. Otherwise, the fault tolerance of the pool might be compromised. In either case, the device
simply needs to be reattached to the system to restore normal operation.

For example, you might see a message similar to the following from fmd after a device failure:
SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Thu Aug 31 11:40:59 MDT 2006
PLATFORM: SUNW,Sun-Blade-1000, CSN: -, HOSTNAME: tank
SOURCE: zfs-diagnosis, REV: 1.0
EVENT-ID: e11d8245-d76a-e152-80c6-e63763ed7e4e
DESC: A ZFS device failed. Refer to http://illumos.org/msg/ZFS-8000-D3 for more information.
AUTO-RESPONSE: No automated response will occur.
IMPACT: Fault tolerance of the pool may be compromised.
REC-ACTION: Run ’zpool status -x’ and replace the bad device.

The next step is to use the zpool status -x command to view more detailed information about the device
problem and the resolution. For example:
zpool status -x

pool: tank
state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for
the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.
see: http://illumos.org/msg/ZFS-8000-D3

scrub: resilver completed with 0 errors on Thu Aug 31 11:45:59 MDT 2006
config:

NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0
mirror DEGRADED 0 0 0
c0t1d0 UNAVAIL 0 0 0 cannot open
c1t1d0 ONLINE 0 0 0

165

10. ZFS TROUBLESHOOTING AND DATA RECOVERY

You can see from this output that the missing device c0t1d0 is not functioning. If you determine that the
drive is faulty, replace the device.

Then, use the zpool online command to online the replaced device. For example:

zpool online tank c0t1d0

Confirm that the pool with the replaced device is healthy.

zpool status -x tank
pool ’tank’ is healthy

Physically Reattaching the Device

Exactly how a missing device is reattached depends on the device in question. If the device is a network-
attached drive, connectivity should be restored. If the device is a USB or other removable media, it should
be reattached to the system. If the device is a local disk, a controller might have failed such that the
device is no longer visible to the system. In this case, the controller should be replaced at which point
the disks will again be available. Other pathologies can exist and depend on the type of hardware and its
configuration. If a drive fails and it is no longer visible to the system (an unlikely event), the device should
be treated as a damaged device. Follow the procedures outlined in Section 10.6.

Notifying ZFS of Device Availability

Once a device is reattached to the system, ZFS might or might not automatically detect its availability.
If the pool was previously faulted, or the system was rebooted as part of the attach procedure, then ZFS
automatically rescans all devices when it tries to open the pool. If the pool was degraded and the device
was replaced while the system was up, you must notify ZFS that the device is now available and ready to
be reopened by using the zpool online command. For example:

zpool online tank c0t1d0

For more information about bringing devices online, see Section 4.4.

10.6 Repairing a Damaged Device

This section describes how to determine device failure types, clear transient errors, and replace a device.

Determining the Type of Device Failure

The term damaged device is rather vague, and can describe a number of possible situations:

• Bit rot – Over time, random events, such as magnetic influences and cosmic rays, can cause bits stored
on disk to flip in unpredictable events. These events are relatively rare but common enough to cause
potential data corruption in large or long-running systems. These errors are typically transient.

• Misdirected reads or writes – Firmware bugs or hardware faults can cause reads or writes of entire
blocks to reference the incorrect location on disk. These errors are typically transient, though a large
number might indicate a faulty drive.

166

10.6. Repairing a Damaged Device

• Administrator error – Administrators can unknowingly overwrite portions of the disk with bad data
(such as copying /dev/zero over portions of the disk) that cause permanent corruption on disk. These
errors are always transient.

• Temporary outage– A disk might become unavailable for a period time, causing I/Os to fail. This
situation is typically associated with network-attached devices, though local disks can experience
temporary outages as well. These errors might or might not be transient.

• Bad or flaky hardware – This situation is a catch-all for the various problems that bad hardware
exhibits. This could be consistent I/O errors, faulty transports causing random corruption, or any number
of failures. These errors are typically permanent.

• Offlined device – If a device is offline, it is assumed that the administrator placed the device in this
state because it is presumed faulty. The administrator who placed the device in this state can determine
is this assumption is accurate.

Determining exactly what is wrong can be a difficult process. The first step is to examine the error counts
in the zpool status output as follows:

zpool status -v pool

The errors are divided into I/O errors and checksum errors, both of which might indicate the possible
failure type. Typical operation predicts a very small number of errors (just a few over long periods of time).
If you are seeing large numbers of errors, then this situation probably indicates impending or complete
device failure. However, the pathology for administrator error can result in large error counts. The other
source of information is the system log. If the log shows a large number of SCSI or fibre channel driver
messages, then this situation probably indicates serious hardware problems. If no syslog messages are
generated, then the damage is likely transient.

The goal is to answer the following question:

Is another error likely to occur on this device?

Errors that happen only once are considered transient, and do not indicate potential failure. Errors that
are persistent or severe enough to indicate potential hardware failure are considered “fatal.” The act of
determining the type of error is beyond the scope of any automated software currently available with
ZFS, and so much must be done manually by you, the administrator. Once the determination is made, the
appropriate action can be taken. Either clear the transient errors or replace the device due to fatal errors.
These repair procedures are described in the next sections.

Even if the device errors are considered transient, it still may have caused uncorrectable data errors within
the pool. These errors require special repair procedures, even if the underlying device is deemed healthy
or otherwise repaired. For more information on repairing data errors, see Section 10.7.

Clearing Transient Errors

If the device errors are deemed transient, in that they are unlikely to effect the future health of the device,
then the device errors can be safely cleared to indicate that no fatal error occurred. To clear error counters
for RAID-Z or mirrored devices, use the zpool clear command. For example:

zpool clear tank c1t0d0

167

10. ZFS TROUBLESHOOTING AND DATA RECOVERY

This syntax clears any errors associated with the device and clears any data error counts associated with
the device.

To clear all errors associated with the virtual devices in the pool, and clear any data error counts associated
with the pool, use the following syntax:

zpool clear tank

For more information about clearing pool errors, see Section 4.4.

Replacing a Device in a ZFS Storage Pool

If device damage is permanent or future permanent damage is likely, the device must be replaced. Whether
the device can be replaced depends on the configuration.

• Section 10.6

• Section 10.6

• Section 10.6

• Section 10.6

Determining if a Device Can Be Replaced

For a device to be replaced, the pool must be in the ONLINE state. The device must be part of a redundant
configuration, or it must be healthy (in the ONLINE state). If the disk is part of a redundant configuration,
sufficient replicas from which to retrieve good data must exist. If two disks in a four-way mirror are
faulted, then either disk can be replaced because healthy replicas are available. However, if two disks in a
four-way RAID-Z device are faulted, then neither disk can be replaced because not enough replicas from
which to retrieve data exist. If the device is damaged but otherwise online, it can be replaced as long as the
pool is not in the FAULTED state. However, any bad data on the device is copied to the new device unless
there are sufficient replicas with good data.

In the following configuration, the disk c1t1d0 can be replaced, and any data in the pool is copied from
the good replica, c1t0d0.

mirror DEGRADED
c1t0d0 ONLINE
c1t1d0 FAULTED

The disk c1t0d0 can also be replaced, though no self-healing of data can take place because no good
replica is available.

In the following configuration, neither of the faulted disks can be replaced. The ONLINE disks cannot be
replaced either, because the pool itself is faulted.

raidz FAULTED
c1t0d0 ONLINE
c2t0d0 FAULTED
c3t0d0 FAULTED
c3t0d0 ONLINE

168

10.6. Repairing a Damaged Device

In the following configuration, either top-level disk can be replaced, though any bad data present on the
disk is copied to the new disk.

c1t0d0 ONLINE
c1t1d0 ONLINE

If either disk were faulted, then no replacement could be performed because the pool itself would be
faulted.

Devices That Cannot be Replaced

If the loss of a device causes the pool to become faulted, or the device contains too many data errors in an
non-redundant configuration, then the device cannot safely be replaced. Without sufficient redundancy, no
good data with which to heal the damaged device exists. In this case, the only option is to destroy the pool
and re-create the configuration, restoring your data in the process.

For more information about restoring an entire pool, see Section 10.7.

Replacing a Device in a ZFS Storage Pool

Once you have determined that a device can be replaced, use the zpool replace command to replace the
device. If you are replacing the damaged device with another different device, use the following command:

zpool replace tank c1t0d0 c2t0d0

This command begins migrating data to the new device from the damaged device, or other devices in the
pool if it is in a redundant configuration. When the command is finished, it detaches the damaged device
from the configuration, at which point the device can be removed from the system. If you have already
removed the device and replaced it with a new device in the same location, use the single device form of
the command. For example:

zpool replace tank c1t0d0

This command takes an unformatted disk, formats it appropriately, and then begins resilvering data from
the rest of the configuration.

For more information about the zpool replace command, see Section 4.4.

Viewing Resilvering Status

The process of replacing a drive can take an extended period of time, depending on the size of the drive
and the amount of data in the pool. The process of moving data from one device to another device is
known as resilvering, and can be monitored by using the zpool status command.

Traditional file systems resilver data at the block level. Because ZFS eliminates the artificial layering of
the volume manager, it can perform resilvering in a much more powerful and controlled manner. The two
main advantages of this feature are as follows:

• ZFS only resilvers the minimum amount of necessary data. In the case of a short outage (as opposed to a
complete device replacement), the entire disk can be resilvered in a matter of minutes or seconds, rather
than resilvering the entire disk, or complicating matters with “dirty region” logging that some volume

169

10. ZFS TROUBLESHOOTING AND DATA RECOVERY

managers support. When an entire disk is replaced, the resilvering process takes time proportional to the
amount of data used on disk. Replacing a 500-Gbyte disk can take seconds if only a few gigabytes of
used space is in the pool.

• Resilvering is interruptible and safe. If the system loses power or is rebooted, the resilvering process
resumes exactly where it left off, without any need for manual intervention.

To view the resilvering process, use the zpool status command. For example:

zpool status tank
pool: tank

state: DEGRADED
reason: One or more devices is being resilvered.
action: Wait for the resilvering process to complete.

see: http://illumos.org/msg/ZFS-XXXX-08
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
tank DEGRADED 0 0 0

mirror DEGRADED 0 0 0
replacing DEGRADED 0 0 0 52% resilvered
c1t0d0 ONLINE 0 0 0
c2t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

In this example, the disk c1t0d0 is being replaced by c2t0d0. This event is observed in the status
output by presence of the replacing virtual device in the configuration. This device is not real, nor is it
possible for you to create a pool by using this virtual device type. The purpose of this device is solely to
display the resilvering process, and to identify exactly which device is being replaced.

Note that any pool currently undergoing resilvering is placed in the DEGRADED state, because the pool
cannot provide the desired level of redundancy until the resilvering process is complete. Resilvering
proceeds as fast as possible, though the I/O is always scheduled with a lower priority than user-requested
I/O, to minimize impact on the system. Once the resilvering is complete, the configuration reverts to the
new, complete, configuration. For example:

zpool status tank
pool: tank

state: ONLINE
scrub: scrub completed with 0 errors on Thu Aug 31 11:20:18 2006

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0

mirror ONLINE 0 0 0
c2t0d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0

errors: No known data errors

The pool is once again ONLINE, and the original bad disk (c1t0d0) has been removed from the configu-
ration.

170

10.7. Repairing Damaged Data

10.7 Repairing Damaged Data

The following sections describe how to identify the type of data corruption and how to repair the data, if
possible.

• Section 10.7

• Section 10.7

• Section 10.7

ZFS uses checksumming, redundancy, and self-healing data to minimize the chances of data corruption.
Nonetheless, data corruption can occur if the pool isn’t redundant, if corruption occurred while the pool
was degraded, or an unlikely series of events conspired to corrupt multiple copies of a piece of data.
Regardless of the source, the result is the same: The data is corrupted and therefore no longer accessible.
The action taken depends on the type of data being corrupted, and its relative value. Two basic types of
data can be corrupted:

• Pool metadata – ZFS requires a certain amount of data to be parsed to open a pool and access datasets.
If this data is corrupted, the entire pool or complete portions of the dataset hierarchy will become
unavailable.

• Object data – In this case, the corruption is within a specific file or directory. This problem might result
in a portion of the file or directory being inaccessible, or this problem might cause the object to be
broken altogether.

Data is verified during normal operation as well as through scrubbing. For more information about how to
verify the integrity of pool data, see Section 10.2.

Identifying the Type of Data Corruption

By default, the zpool status command shows only that corruption has occurred, but not where this
corruption occurred. For example:

zpool status tank -v
pool: tank

state: ONLINE
status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.
see: http://illumos.org/msg/ZFS-8000-8A

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 1 0 0
mirror ONLINE 1 0 0
c2t0d0 ONLINE 2 0 0
c1t1d0 ONLINE 2 0 0

errors: The following persistent errors have been detected:

171

10. ZFS TROUBLESHOOTING AND DATA RECOVERY

DATASET OBJECT RANGE
tank 6 0-512

zpool status
pool: monkey

state: ONLINE
status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.
see: http://illumos.org/msg/ZFS-8000-8A

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
monkey ONLINE 0 0 0

c1t1d0s6 ONLINE 0 0 0
c1t1d0s7 ONLINE 0 0 0

errors: 8 data errors, use ’-v’ for a list

Each error indicates only that an error occurred at the given point in time. Each error is not necessarily
still present on the system. Under normal circumstances, this situation is true. Certain temporary outages
might result in data corruption that is automatically repaired once the outage ends. A complete scrub of
the pool is guaranteed to examine every active block in the pool, so the error log is reset whenever a scrub
finishes. If you determine that the errors are no longer present, and you don’t want to wait for a scrub to
complete, reset all errors in the pool by using the zpool online command.

If the data corruption is in pool-wide metadata, the output is slightly different. For example:

zpool status -v morpheus
pool: morpheus

id: 1422736890544688191
state: FAULTED

status: The pool metadata is corrupted.
action: The pool cannot be imported due to damaged devices or data.

see: http://illumos.org/msg/ZFS-8000-72
config:

morpheus FAULTED corrupted data
c1t10d0 ONLINE

In the case of pool-wide corruption, the pool is placed into the FAULTED state, because the pool cannot
possibly provide the needed redundancy level.

Repairing a Corrupted File or Directory

If a file or directory is corrupted, the system might still be able to function depending on the type of
corruption. Any damage is effectively unrecoverable if no good copies of the data exist anywhere on the
system. If the data is valuable, you have no choice but to restore the affected data from backup. Even so,
you might be able to recover from this corruption without restoring the entire pool.

If the damage is within a file data block, then the file can safely be removed, thereby clearing the error
from the system. Use the zpool status -v command to display a list of filenames with persistent errors.
For example:

172

10.7. Repairing Damaged Data

zpool status -v
pool: monkey

state: ONLINE
status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.
see: http://illumos.org/msg/ZFS-8000-8A

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
monkey ONLINE 0 0 0
c1t1d0s6 ONLINE 0 0 0
c1t1d0s7 ONLINE 0 0 0

errors: Permanent errors have been detected in the following files:

/monkey/a.txt
/monkey/bananas/b.txt
/monkey/sub/dir/d.txt
/monkey/ghost/e.txt
/monkey/ghost/boo/f.txt

The preceding output is described as follows:

• If the full path to the file is found and the dataset is mounted, the full path to the file is displayed. For
example:

/monkey/a.txt

• If the full path to the file is found, but the dataset is not mounted, then the dataset name with no preceding
slash (/), followed by the path within the dataset to the file, is displayed. For example:

monkey/ghost:/e.txt

• If the object number to a file path cannot be successfully translated, either due to an error or because the
object doesn’t have a real file path associated with it , as is the case for a dnode_t, then the dataset
name followed by the object’s number is displayed. For example:

monkey/dnode:<0x0>

• If an object in the meta-object set (MOS) is corrupted, then a special tag of <metadata>, followed by
the object number, is displayed.

If the damage is within a file data block, then the file can safely be removed, thereby clearing the error
from the system. The first step is to try to locate the file by using the find command and specify the object
number that is identified in the zpool status output under DATASET/OBJECT/RANGE output as the
inode number to find. For example:

find -inum 6

Then, try removing the file with the rm command. If this command doesn’t work, the corruption is within
the file’s metadata, and ZFS cannot determine which blocks belong to the file in order to remove the
corruption.

173

10. ZFS TROUBLESHOOTING AND DATA RECOVERY

If the corruption is within a directory or a file’s metadata, the only choice is to move the file elsewhere.
You can safely move any file or directory to a less convenient location, allowing the original object to be
restored in place.

Repairing ZFS Storage Pool-Wide Damage

If the damage is in pool metadata that damage prevents the pool from being opened, then you must restore
the pool and all its data from backup. The mechanism you use varies widely by the pool configuration
and backup strategy. First, save the configuration as displayed by zpool status so that you can recreate it
once the pool is destroyed. Then, use zpool destroy -f to destroy the pool. Also, keep a file describing
the layout of the datasets and the various locally set properties somewhere safe, as this information will
become inaccessible if the pool is ever rendered inaccessible. With the pool configuration and dataset
layout, you can reconstruct your complete configuration after destroying the pool. The data can then be
populated by using whatever backup or restoration strategy you use.

10.8 Repairing an Unbootable System

ZFS is designed to be robust and stable despite errors. Even so, software bugs or certain unexpected
pathologies might cause the system to panic when a pool is accessed. As part of the boot process, each
pool must be opened, which means that such failures will cause a system to enter into a panic-reboot loop.
In order to recover from this situation, ZFS must be informed not to look for any pools on startup.

ZFS maintains an internal cache of available pools and their configurations in /etc/zfs/zpool.
cache. The location and contents of this file are private and are subject to change. If the system becomes
unbootable, boot to the none milestone by using the -m milestone=none boot option. Once the
system is up, remount your root file system as writable and then remove /etc/zfs/zpool.cache.
These actions cause ZFS to forget that any pools exist on the system, preventing it from trying to access
the bad pool causing the problem. You can then proceed to a normal system state by issuing the svcadm
milestone all command. You can use a similar process when booting from an alternate root to perform
repairs.

Once the system is up, you can attempt to import the pool by using the zpool import command. However,
doing so will likely cause the same error that occurred during boot, because the command uses the same
mechanism to access pools. If more than one pool is on the system and you want to import a specific pool
without accessing any other pools, you must re-initialize the devices in the damaged pool, at which point
you can safely import the good pool.

174

	Contents
	List of Tables
	ZFS File System (Introduction)
	What's New in ZFS?
	Using Cache Devices in Your ZFS Storage Pool
	Enhancements to the zfs send Command
	ZFS Quotas and Reservations for File System Data Only
	ZFS File System Properties for the Solaris CIFS Service
	ZFS Storage Pool Properties
	ZFS and File System Mirror Mounts
	ZFS Command History Enhancements (zpool history)
	Upgrading ZFS File Systems (zfs upgrade)
	ZFS Delegated Administration
	Setting Up Separate ZFS Logging Devices
	Creating Intermediate ZFS Datasets
	ZFS Hotplugging Enhancements
	Recursively Renaming ZFS Snapshots (zfs rename -r)
	GZIP Compression is Available for ZFS
	Storing Multiple Copies of ZFS User Data
	Improved zpool status Output
	ZFS and Solaris iSCSI Improvements
	Sharing ZFS File System Enhancements
	ZFS Command History (zpool history)
	ZFS Property Improvements
	ZFS xattr Property
	ZFS canmount Property
	ZFS User Properties
	Setting Properties When Creating ZFS File Systems

	Displaying All ZFS File System Information
	New zfs receive -F Option
	Recursive ZFS Snapshots
	Double Parity RAID-Z (raidz2)
	Hot Spares for ZFS Storage Pool Devices
	Replacing a ZFS File System With a ZFS Clone (zfs promote)
	Upgrading ZFS Storage Pools (zpool upgrade)
	Using ZFS to Clone Non-Global Zones and Other Enhancements
	ZFS Backup and Restore Commands are Renamed
	Recovering Destroyed Storage Pools
	ZFS is Integrated With Fault Manager
	New zpool clear Command
	Compact NFSv4 ACL Format
	File System Monitoring Tool (fsstat)
	ZFS Web-Based Management

	What Is ZFS?
	ZFS Pooled Storage
	Transactional Semantics
	Checksums and Self-Healing Data
	Unparalleled Scalability
	ZFS Snapshots
	Simplified Administration

	ZFS Terminology
	ZFS Component Naming Requirements

	Getting Started With ZFS
	ZFS Hardware and Software Requirements and Recommendations
	Creating a Basic ZFS File System
	Creating a ZFS Storage Pool
	Creating a ZFS File System Hierarchy

	ZFS and Traditional File System Differences
	ZFS File System Granularity
	ZFS Space Accounting
	Out of Space Behavior

	Mounting ZFS File Systems
	Traditional Volume Management
	The NFSv4 ACL Model

	Managing ZFS Storage Pools
	Components of a ZFS Storage Pool
	Using Disks in a ZFS Storage Pool
	Using Files in a ZFS Storage Pool
	Identifying Virtual Devices in a Storage Pool

	Replication Features of a ZFS Storage Pool
	Mirrored Storage Pool Configuration
	RAID-Z Storage Pool Configuration
	Self-Healing Data in a Redundant Configuration
	Dynamic Striping in a Storage Pool

	Creating and Destroying ZFS Storage Pools
	Creating a ZFS Storage Pool
	Creating a Basic Storage Pool
	Creating a Mirrored Storage Pool
	Creating RAID-Z Storage Pools
	Creating a ZFS Storage Pool with Log Devices
	Creating a ZFS Storage Pool with Cache Devices

	Handling ZFS Storage Pool Creation Errors
	Detecting in Use Devices
	Mismatched Replication Levels
	Doing a Dry Run of Storage Pool Creation
	Default Mount Point for Storage Pools

	Destroying ZFS Storage Pools
	Destroying a Pool With Faulted Devices

	Managing Devices in ZFS Storage Pools
	Adding Devices to a Storage Pool
	Attaching and Detaching Devices in a Storage Pool
	Onlining and Offlining Devices in a Storage Pool
	Taking a Device Offline
	Bringing a Device Online

	Clearing Storage Pool Devices
	Replacing Devices in a Storage Pool
	Designating Hot Spares in Your Storage Pool
	Activating and Deactivating Hot Spares in Your Storage Pool

	Managing ZFS Storage Pool Properties
	Querying ZFS Storage Pool Status
	Displaying Basic ZFS Storage Pool Information
	Listing Information About All Storage Pools
	Listing Specific Storage Pool Statistics
	Scripting ZFS Storage Pool Output

	Viewing ZFS Storage Pool I/O Statistics
	Listing Pool-Wide Statistics
	Listing Virtual Device Statistics

	Determining the Health Status of ZFS Storage Pools
	Basic Storage Pool Health Status
	Detailed Health Status

	Migrating ZFS Storage Pools
	Preparing for ZFS Storage Pool Migration
	Exporting a ZFS Storage Pool
	Determining Available Storage Pools to Import
	Finding ZFS Storage Pools From Alternate Directories
	Importing ZFS Storage Pools
	Recovering Destroyed ZFS Storage Pools
	Upgrading ZFS Storage Pools

	Managing ZFS File Systems
	Creating and Destroying ZFS File Systems
	Creating a ZFS File System
	Destroying a ZFS File System
	Renaming a ZFS File System

	Introducing ZFS Properties
	ZFS Read-Only Native Properties
	The used Property

	Settable ZFS Native Properties
	The canmount Property
	The casesensitivity Property
	The recordsize Property
	The sharesmb Property
	The volsize Property

	ZFS User Properties

	Querying ZFS File System Information
	Listing Basic ZFS Information
	Creating Complex ZFS Queries

	Managing ZFS Properties
	Setting ZFS Properties
	Inheriting ZFS Properties
	Querying ZFS Properties
	Querying ZFS Properties for Scripting

	Mounting and Sharing ZFS File Systems
	Managing ZFS Mount Points
	Automatic Mount Points
	Legacy Mount Points

	Mounting ZFS File Systems
	Using Temporary Mount Properties
	Unmounting ZFS File Systems
	Sharing and Unsharing ZFS File Systems
	Controlling Share Semantics
	Unsharing ZFS File Systems
	Sharing ZFS File Systems
	Legacy Share Behavior

	Sharing ZFS Files in a Solaris CIFS Environment

	ZFS Quotas and Reservations
	Setting Quotas on ZFS File Systems
	Setting Reservations on ZFS File Systems

	Working With ZFS Snapshots and Clones
	Overview of ZFS Snapshots
	Creating and Destroying ZFS Snapshots
	Renaming ZFS Snapshots

	Displaying and Accessing ZFS Snapshots
	Snapshot Space Accounting

	Rolling Back to a ZFS Snapshot

	Overview of ZFS Clones
	Creating a ZFS Clone
	Destroying a ZFS Clone
	Replacing a ZFS File System With a ZFS Clone

	Saving and Restoring ZFS Data
	Saving ZFS Data With Other Backup Products
	Saving a ZFS Snapshot
	Restoring a ZFS Snapshot
	Sending and Receiving Complex ZFS Snapshot Streams
	Remote Replication of ZFS Data

	Using ACLs to Protect ZFS Files
	The NFSv4 ACL Model
	Syntax Descriptions for Setting ACLs
	ACL Inheritance
	ACL Property Modes

	Setting ACLs on ZFS Files
	Setting and Displaying ACLs on ZFS Files in Verbose Format
	Setting ACL Inheritance on ZFS Files in Verbose Format

	Setting and Displaying ACLs on ZFS Files in Compact Format

	ZFS Delegated Administration
	Overview of ZFS Delegated Administration
	Disabling ZFS Delegated Permissions

	Delegating ZFS Permissions
	Syntax Descriptions for Delegating Permissions
	Removing ZFS Delegated Permissions (zfs unallow)

	Using ZFS Delegated Administration
	Displaying ZFS Delegated Permissions (Examples)
	Delegating ZFS Permissions (Examples)
	Removing ZFS Permission (Examples)

	ZFS Advanced Topics
	ZFS Volumes
	Using a ZFS Volume as a Swap or Dump Device
	Using a ZFS Volume as a Solaris iSCSI Target

	Using ZFS With Zones
	Adding ZFS File Systems to a Non-Global Zone
	Delegating Datasets to a Non-Global Zone
	Adding ZFS Volumes to a Non-Global Zone
	Using ZFS Storage Pools Within a Zone
	Managing ZFS Properties Within a Zone
	Understanding the zoned Property

	Using ZFS Alternate Root Pools
	Creating ZFS Alternate Root Pools
	Importing Alternate Root Pools

	ZFS Rights Profiles

	ZFS Troubleshooting and Data Recovery
	ZFS Failure Modes
	Missing Devices in a ZFS Storage Pool
	Damaged Devices in a ZFS Storage Pool
	Corrupted ZFS Data

	Checking ZFS Data Integrity
	Data Repair
	Data Validation
	Controlling ZFS Data Scrubbing
	Explicit ZFS Data Scrubbing
	ZFS Data Scrubbing and Resilvering

	Identifying Problems in ZFS
	Determining if Problems Exist in a ZFS Storage Pool
	Reviewing zpool status Output
	Overall Pool Status Information
	Configuration Information
	Scrubbing Status
	Data Corruption Errors

	System Reporting of ZFS Error Messages

	Repairing a Damaged ZFS Configuration
	Repairing a Missing Device
	Physically Reattaching the Device
	Notifying ZFS of Device Availability

	Repairing a Damaged Device
	Determining the Type of Device Failure
	Clearing Transient Errors
	Replacing a Device in a ZFS Storage Pool
	Determining if a Device Can Be Replaced
	Devices That Cannot be Replaced
	Replacing a Device in a ZFS Storage Pool
	Viewing Resilvering Status

	Repairing Damaged Data
	Identifying the Type of Data Corruption
	Repairing a Corrupted File or Directory
	Repairing ZFS Storage Pool-Wide Damage

	Repairing an Unbootable System

