Hardening illumos Drivers

Fault Management Architecture (FMA) I/O Fault Services enable driver developers to integrate fault management capabilities into I/O device drivers. The illumos I/O fault services framework defines a set of interfaces that enable all drivers to coordinate and perform basic error handling tasks and activities. The illumos FMA as a whole provides for error handling and fault diagnosis, in addition to response and recovery. FMA is a component of illumos's Predictive Self-Healing strategy.

A driver is considered hardened when it uses the defensive programming practices described in this document in addition to the I/O fault services framework for error handling and diagnosis. The driver hardening test harness tests that the I/O fault services and defensive programming requirements have been correctly fulfilled.

13.1. illumos Fault Management Architecture I/O Fault Services

This section explains how to integrate fault management error reporting, error handling, and diagnosis for I/O device drivers. This section provides an in-depth examination of the I/O fault services framework and how to utilize the I/O fault service APIs within a device driver.

13.1.1. What Is Predictive Self-Healing?

Traditionally, systems have exported hardware and software error information directly to human administrators and to management software in the form of syslog messages. Often, error detection, diagnosis, reporting, and handling was embedded in the code of each driver.

A system like the illumos OS predictive self-healing system is first and foremost self-diagnosing. Self-diagnosing means the system provides technology to automatically diagnose problems from observed symptoms, and the results of the diagnosis can then be used to trigger automated response and recovery. A fault in hardware or a defect in software can be associated with a set of possible observed symptoms called errors. The data generated by the system as the result of observing an error is called an error report or ereport.

In a system capable of self-healing, ereports are captured by the system and are encoded as a set of name-value pairs described by an extensible event protocol to form an ereport event. Ereport events and other data are gathered to facilitate self-healing, and are dispatched to software components called diagnosis engines designed to diagnose the underlying problems corresponding to the error symptoms observed by the system. A diagnosis engine runs in the background and silently consumes error telemetry until it can produce a diagnosis or predict a fault.

After processing sufficient telemetry to reach a conclusion, a diagnosis engine produces another event called a fault event. The fault event is then broadcast to all agents that are interested in the specific fault event. An agent is a software component that initiates recovery and responds to specific fault events. A software component known as the illumos Fault Manager, fmd(1M), manages the multiplexing of events between ereport generators, diagnosis engines, and agent software.

13.1.2. illumos Fault Manager

The illumos Fault Manager, fmd(1M), is responsible for dispatching in-bound error telemetry events to the appropriate diagnosis engines. The diagnosis engine is responsible for identifying the underlying hardware faults or software defects that are producing the error symptoms. The fmd(1M) daemon is the illumos implementation of a fault manager. It starts at boot time and loads all of the diagnosis engines and agents available on the system. The illumos Fault Manager also provides interfaces for system administrators and service personnel to observe fault management activity.

Diagnosis, Suspect Lists, and Fault Events

Once a diagnosis has been made, the diagnosis is output in the form of a list.suspect event. A list.suspect event is an event comprised of one or more possible fault or defect events. Sometimes the diagnosis cannot narrow the cause of errors to a single fault or defect. For example, the underlying problem might be a broken wire connecting controllers to the main system bus. The problem might be with a component on the bus or with the bus itself. In this specific case, the list.suspect event will contain multiple fault events: one for each controller attached to the bus, and one for the bus itself.

For example, after receiving a certain number of ECC correctable errors in a given amount of time for a particular memory location, the CPU and memory diagnosis engine issues a diagnosis (list.suspect event) for a faulty DIMM.

# fmdump -v -u 38bd6f1b-a4de-4c21-db4e-ccd26fa8573c
TIME                 UUID                                 SUNW-MSG-ID
Oct 31 13:40:18.1864 38bd6f1b-a4de-4c21-db4e-ccd26fa8573c AMD-8000-8L
100%  fault.cpu.amd.icachetag

Problem in: hc:///motherboard=0/chip=0/cpu=0
Affects: cpu:///cpuid=0
FRU: hc:///motherboard=0/chip=0
Location: SLOT 2

In this example, fmd(1M) has identified a problem in a resource, specifically a CPU (hc:///motherboard=0/chip=0/cpu=0). To suppress further error symptoms and to prevent an uncorrectable error from occurring, an ASRU, (cpu:///cpuid=0), is identified for retirement. The component that needs to be replaced is the FRU (hc:///motherboard=0/chip=0).

Response Agents

An agent is a software component that takes action in response to a diagnosis or repair. For example, the CPU and memory retire agent is designed to act on list.suspects that contain a fault.cpu.* event. The cpumem-retire agent will attempt to off-line a CPU or retire a physical memory page from service. If the agent is successful, an entry in the fault manager's ASRU cache is added for the page or CPU that was successfully retired. The fmadm(1M) utility, as shown in the example below, shows an entry for a memory rank that has been diagnosed as having a fault. ASRUs that the system does not have the ability to off-line, retire, or disable, will also have an entry in the ASRU cache, but they will be seen as degraded. Degraded means the resource associated with the ASRU is faulty, but the ASRU is unable to be removed from service. Currently illumos agent software cannot act upon I/O ASRUs (device instances). All faulty I/O resource entries in the cache are in the degraded state.

# fmadm faulty
-------- ----------------------------------------------------------------------
degraded mem:///motherboard=0/chip=1/memory-controller=0/dimm=3/rank=0
-------- ----------------------------------------------------------------------

The primary purpose of a retire agent is to isolate (safely remove from service) the piece of hardware or software that has been diagnosed as faulty.

Message IDs and Dictionary Files

The syslog message agent takes the output of the diagnosis (the list.suspect event) and writes specific messages to the console or /var/adm/messages. Often console messages can be difficult to understand. FMA remedies this problem by providing a defined fault message structure that is generated every time a list.suspect event is delivered to a syslog message.

The syslog agent generates a message identifier (MSG ID). The event registry generates dictionary files (.dict files) that map a list.suspect event to a structured message identifier that should be used to identify and view the associated knowledge article. Message files, (.po files) map the message ID to localized messages for every possible list of suspected faults that the diagnosis engine can generate. The following is an example of a fault message emitted on a test system.

SUNW-MSG-ID: AMD-8000-7U, TYPE: Fault, VER: 1, SEVERITY: Major
EVENT-TIME: Fri Jul 28 04:26:51 PDT 2006
PLATFORM: Sun Fire V40z, CSN: XG051535088, HOSTNAME: parity
SOURCE: eft, REV: 1.16
EVENT-ID: add96f65-5473-69e6-dbe1-8b3d00d5c47b
DESC: The number of errors associated with this CPU has exceeded 
acceptable levels. Refer to http://sun.com/msg/AMD-8000-7U for 
more information.
AUTO-RESPONSE: An attempt will be made to remove this CPU from service.
IMPACT: Performance of this system may be affected.
REC-ACTION: Schedule a repair procedure to replace the affected CPU. 
Use fmdump -v -u <EVENT_ID> to identify the module.

System Topology

To identify where a fault might have occurred, diagnosis engines need to have the topology for a given software or hardware system represented. The fmd(1M) daemon provides diagnosis engines with a handle to a topology snapshot that can be used during diagnosis. Topology information is used to represent the resource, ASRU, and FRU found in each fault event. The topology can also be used to store the platform label, FRUID, and serial number identification.

The resource payload member in the fault event is always represented by the physical path location from the platform chassis outward. For example, a PCI controller function that is bridged from the main system bus to a PCI local bus is represented by its hc scheme path name:


The ASRU payload member in the fault event is typically represented by the illumos device tree instance name that is bound to a hardware controller, device, or function. FMA uses the dev scheme to represent the ASRU in its native format for actions that might be taken by a future implementation of a retire agent specifically designed for I/O devices:


The FRU payload representation in the fault event varies depending on the closest replaceable component to the I/O resource that has been diagnosed as faulty. For example, a fault event for a broken embedded PCI controller might name the motherboard of the system as the FRU that needs to be replaced:


The label payload is a string that gives the location of the FRU in the same form as it is printed on the chassis or motherboard, for example next to a DIMM slot or PCI card slot:

Label: SLOT 2

13.1.3. Error Handling

This section describes how to use I/O fault services APIs to handle errors within a driver. This section discusses how drivers should indicate and initialize their fault management capabilities, generate error reports, and register the driver's error handler routine.

Excerpts are provided from source code examples that demonstrate the use of the I/O fault services API from the Broadcom 1Gb NIC driver, bge. Follow these examples as a model for how to integrate fault management capability into your own drivers. Take the following steps to study the complete bge driver code:

Drivers that have been instrumented to provide FMA error report telemetry detect errors and determine the impact of those errors on the services provided by the driver. Following the detection of an error, the driver should determine when its services have been impacted and to what degree.

Errors detected by the driver are communicated to the fault management daemon as an ereport. An ereport is a structured event defined by the FMA event protocol. The event protocol is a specification for a set of common data fields that must be used to describe all possible error and fault events, in addition to the list of suspected faults. Ereports are gathered into a flow of error telemetry and dispatched to the diagnosis engine.

Declaring Fault Management Capabilities

A hardened device driver must declare its fault management capabilities to the I/O Fault Management framework. Use the ddi_fm_init(9F) function to declare the fault management capabilities of your driver.

void ddi_fm_init(dev_info_t *dip, int *fmcap, ddi_iblock_cookie_t *ibcp)

The ddi_fm_init function can be called from kernel context in a driver attach(9E) or detach(9E) entry point. The ddi_fm_init function usually is called from the attach entry point. The ddi_fm_init function allocates and initializes resources according to fmcap. The fmcap parameter must be set to the bitwise-inclusive-OR of the following fault management capabilities:

A hardened leaf driver generally sets all these capabilities. However, if its parent nexus is not capable of supporting any one of the requested capabilities, the associated bit is cleared and returned as such to the driver. Before returning from ddi_fm_init(9F), the I/O fault services framework creates a set of fault management capability properties: fm-ereport-capable, fm-accchk-capable, fm-dmachk-capable and fm-errcb-capable. The currently supported fault management capability level is observable by using the prtconf(1M) command.

To make your driver support administrative selection of fault management capabilities, export and set the fault management capability level properties to the values described above in the driver.conf(4) file. The fm-capable properties must be set and read prior to calling ddi_fm_init with the desired capability list.

The following example from the bge driver shows the bge_fm_init function, which calls the ddi_fm_init(9F) function. The bge_fm_init function is called in the bge_attach function.

static void
bge_fm_init(bge_t *bgep)
        ddi_iblock_cookie_t iblk;

        /* Only register with IO Fault Services if we have some capability */
        if (bgep->fm_capabilities) {
                bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
                bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
                dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
                 * Register capabilities with IO Fault Services
                ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
                 * Initialize pci ereport capabilities if ereport capable
                if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
                 * Register error callback if error callback capable
                if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
                        bge_fm_error_cb, (void*) bgep);
        } else {
                 * These fields have to be cleared of FMA if there are no
                 * FMA capabilities at runtime.
                bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
                bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
                dma_attr.dma_attr_flags = 0;

Cleaning Up Fault Management Resources

The ddi_fm_fini(9F) function cleans up resources allocated to support fault management for dip.

void ddi_fm_fini(dev_info_t *dip)

The ddi_fm_fini function can be called from kernel context in a driver attach(9E) or detach(9E) entry point.

The following example from the bge driver shows the bge_fm_fini function, which calls the ddi_fm_fini(9F) function. The bge_fm_fini function is called in the bge_unattach function, which is called in both the bge_attach and bge_detach functions.

static void
bge_fm_fini(bge_t *bgep)
        /* Only unregister FMA capabilities if we registered some */
        if (bgep->fm_capabilities) {
                 * Release any resources allocated by pci_ereport_setup()
                if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
                 * Un-register error callback if error callback capable
                if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
                 * Unregister from IO Fault Services

Getting the Fault Management Capability Bit Mask

The ddi_fm_capable(9F) function returns the capability bit mask currently set for dip.

void ddi_fm_capable(dev_info_t *dip)

Reporting Errors

Queueing an Error Event

The ddi_fm_ereport_post(9F) function causes an ereport event to be queued for delivery to the fault manager daemon, fmd(1M).

void ddi_fm_ereport_post(dev_info_t *dip, 
                         const char *error_class, 
                         uint64_t ena, 
                         int sflag, ...)

The sflag parameter indicates whether the caller is willing to wait for system memory and event channel resources to become available.

The ENA indicates the Error Numeric Association (ENA) for this error report. The ENA might have been initialized and obtained from another error detecting software module such as a bus nexus driver. If the ENA is set to 0, it will be initialized by ddi_fm_ereport_post.

The name-value pair (nvpair) variable argument list contains one or more name, type, value pointer nvpair tuples for non-array data_type_t types or one or more name, type, number of element, value pointer tuples for data_type_t array types. The nvpair tuples make up the ereport event payload required for diagnosis. The end of the argument list is specified by NULL.

The ereport class names and payloads described in Reporting Standard I/O Controller Errors for I/O controllers are used as appropriate for error_class. Other ereport class names and payloads can be defined, but they must be registered in the illumos event registry and accompanied by driver specific diagnosis engine software, or the Eversholt fault tree (eft) rules. For more information about the illumos event registry and about Eversholt fault tree rules, see the Fault Management community on OpenSolaris.

bge_fm_ereport(bge_t *bgep, char *detail)
        uint64_t ena;
        char buf[FM_MAX_CLASS];
        (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
        ena = fm_ena_generate(0, FM_ENA_FMT1);
        if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities)) {
                ddi_fm_ereport_post(bgep->devinfo, buf, ena, DDI_NOSLEEP,
Detecting and Reporting PCI-Related Errors

PCI-related errors, including PCI, PCI-X, and PCI-E, are automatically detected and reported when you use pci_ereport_post(9F).

void pci_ereport_post(dev_info_t *dip, ddi_fm_error_t *derr, uint16_t *xx_status)

Drivers do not need to generate driver-specific ereports for errors that occur in the PCI Local Bus configuration status registers. The pci_ereport_post function can report data parity errors, master aborts, target aborts, signaled system errors, and much more.

If pci_ereport_post is to be used by a driver, then pci_ereport_setup(9F) must have been previously called during the driver's attach(9E) routine, and pci_ereport_teardown(9F) must subsequently be called during the driver's detach(9E) routine.

The bge code samples below show the bge driver invoking the pci_ereport_post function from the driver's error handler. See also Registering an Error Handler.

 * The I/O fault service error handling callback function
static int
bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
      * as the driver can always deal with an error 
      * in any dma or access handle, we can just return 
      * the fme_status value.
     pci_ereport_post(dip, err, NULL);
     return (err->fme_status);
Reporting Standard I/O Controller Errors

A standard set of device ereports is defined for commonly seen errors for I/O controllers. These ereports should be generated whenever one of the error symptoms described in this section is detected.

The ereports described in this section are dispatched for diagnosis to the eft diagnosis engine, which uses a common set of standard rules to diagnose them. Any other errors detected by device drivers must be defined as ereport events in the illumos event registry and must be accompanied by device specific diagnosis software or eft rules.


The driver has detected that the device is in an invalid state.

A driver should post an error when it detects that the data it transmits or receives appear to be invalid. For example, in the bge code, the bge_chip_reset and bge_receive_ring routines generate the ereport.io.device.inval_state error when these routines detect invalid data.

 * The SEND INDEX registers should be reset to zero by the
 * global chip reset; if they're not, there'll be trouble
 * later on.
sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
if (sx0 != 0) {
    BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
    bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
    return (DDI_FAILURE);
/* ... */
 * Sync (all) the receive ring descriptors
 * before accepting the packets they describe
if (*rrp->prod_index_p >= rrp->desc.nslots) {
    bgep->bge_chip_state = BGE_CHIP_ERROR;
    bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
    return (NULL);

The device has reported a self-corrected internal error. For example, a correctable ECC error has been detected by the hardware in an internal buffer within the device.

This error flag is not used in the bge driver. See the nxge_fm.c file on the illumos source browser for examples that use this error. Take the following steps to study the nxge driver code:

  • Go to illumos source browser.

  • Enter nxge in the File Path field.

  • Select illumos-gate in the project(s) listing.

  • Click the Search button.


The device has reported an uncorrectable internal error. For example, an uncorrectable ECC error has been detected by the hardware in an internal buffer within the device.

This error flag is not used in the bge driver. See the nxge_fm.c file on the illumos source browser for examples that use this error.


The driver has detected that data transfer has stalled unexpectedly.

The bge_factotum_stall_check routine provides an example of stall detection.

dogval = bge_atomic_shl32(&bgep->watchdog, 1);
if (dogval < bge_watchdog_count)
    return (B_FALSE);

BGE_REPORT((bgep, "Tx stall detected, 
watchdog code 0x%x", dogval));
bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
return (B_TRUE);

The device is not responding to a driver command.

bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
        uint32_t mask, uint32_t val)
        uint32_t regval;
        uint32_t n;

        for (n = 200; n; --n) {
                regval = bge_reg_get32(bgep, regno);
                if ((regval & mask) == val)
                        return (B_TRUE);
        bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
        return (B_FALSE);

The device has raised too many consecutive invalid interrupts.

The bge_intr routine within the bge driver provides an example of stuck interrupt detection. The bge_fm_ereport function is a wrapper for the ddi_fm_ereport_post(9F) function. See the bge_fm_ereport example in Queueing an Error Event

if (bgep->missed_dmas >= bge_dma_miss_limit) {
     * If this happens multiple times in a row,
     * it means DMA is just not working.  Maybe
     * the chip has failed, or maybe there's a
     * problem on the PCI bus or in the host-PCI
     * bridge (Tomatillo).
     * At all events, we want to stop further
     * interrupts and let the recovery code take
     * over to see whether anything can be done
     * about it ...
    goto chip_stop;
Service Impact Function

A fault management capable driver must indicate whether or not an error has impacted the services provided by a device. Following detection of an error and, if necessary, a shutdown of services, the driver should invoke the ddi_fm_service_impact(9F) routine to reflect the current service state of the device instance. The service state can be used by diagnosis and recovery software to help identify or react to the problem.

The ddi_fm_service_impact routine should be called both when an error has been detected by the driver itself, and when the framework has detected an error and marked an access or DMA handle as faulty.

void ddi_fm_service_impact(dev_info_t *dip, int svc_impact)

The following service impact values (svc_impact) are accepted by ddi_fm_service_impact:


The service provided by the device is unavailable due to a device fault or software defect.


The driver is unable to provide normal service, but the driver can provide a partial or degraded level of service. For example, the driver might have to make repeated attempts to perform an operation before it succeeds, or it might be running at less that its configured speed.


The driver has detected an error, but the services provided by the device instance are unaffected.


All of the device's services have been restored.

The call to ddi_fm_service_impact generates the following ereports on behalf of the driver, based on the service impact argument to the service impact routine:

In the following bge code, the driver determines that it is unable to successfully restart transmitting or receiving packets as the result of an error. The service state of the device transitions to DDI_SERVICE_LOST.

 * All OK, reinitialize hardware and kick off GLD scheduling
if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
    (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
    (void) bge_check_acc_handle(bgep, bgep->io_handle);
    ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
    return (DDI_FAILURE);

The ddi_fm_service_impact function should not be called from the registered callback routine.

Access Attributes Structure

A DDI_FM_ACCCHK_CAPABLE device driver must set its access attributes to indicate that it is capable of handling programmed I/O (PIO) access errors that occur during a register read or write. The devacc_attr_access field in the ddi_device_acc_attr(9S) structure should be set as an indicator to the system that the driver is capable of checking for and handling data path errors. The ddi_device_acc_attr structure contains the following members:

ushort_t devacc_attr_version;
uchar_t devacc_attr_endian_flags;
uchar_t devacc_attr_dataorder;
uchar_t devacc_attr_access;             /* access error protection */

Errors detected in the data path to or from a device can be processed by one or more of the device driver's nexus parents.

The devacc_attr_access field can be set to the following values:


This flag indicates the system will take the default action (panic if appropriate) when an error occurs. This attribute cannot be used by DDI_FM_ACCCHK_CAPABLE drivers.


This flag indicates that the system will attempt to handle and recover from an error associated with the access handle. The driver should use the techniques described in Defensive Programming Techniques for illumos Device Drivers and should use ddi_fm_acc_err_get(9F) to regularly check for errors before the driver allows data to be passed back to the calling application.

  • Error notification via the driver callback

  • An error condition observable via ddi_fm_acc_err_get(9F)


The DDI_CAUTIOUS_ACC flag provides a high level of protection for each Programmed I/O access made by the driver.

Use of this flag will cause a significant impact on the performance of the driver.

The DDI_CAUTIOUS_ACC flag signifies that an error is anticipated by the accessing driver. The system attempts to handle and recover from an error associated with this handle as gracefully as possible. No error reports are generated as a result, but the handle's fme_status flag is set to DDI_FM_NONFATAL. This flag is functionally equivalent to ddi_peek(9F) and ddi_poke(9F).

The use of the DDI_CAUTIOUS_ACC provides:

  • Exclusive access to the bus

  • On trap protection - (ddi_peek and ddi_poke)

  • Error notification through the driver callback registered with ddi_fm_handler_register(9F)

  • An error condition observable through ddi_fm_acc_err_get(9F)

Generally, drivers should check for data path errors at appropriate junctures in the code path to guarantee consistent data and to ensure that proper error status is presented in the I/O software stack.

DDI_FM_ACCCHK_CAPABLE device drivers must set their devacc_attr_access field to DDI_FLAGERR_ACC or DDI_CAUTIOUS_ACC.

DMA Attributes Structure

As with access handle setup, a DDI_FM_DMACHK_CAPABLE device driver must set the dma_attr_flag field of its ddi_dma_attr(9S) structure to the DDI_DMA_FLAGERR flag. The system attempts to recover from an error associated with a handle that has DDI_DMA_FLAGERR set. The ddi_dma_attr structure contains the following members:

uint_t          dma_attr_version;       /* version number */
uint64_t        dma_attr_addr_lo;       /* low DMA address range */
uint64_t        dma_attr_addr_hi;       /* high DMA address range */
uint64_t        dma_attr_count_max;     /* DMA counter register */
uint64_t        dma_attr_align;         /* DMA address alignment */
uint_t          dma_attr_burstsizes;    /* DMA burstsizes */
uint32_t        dma_attr_minxfer;       /* min effective DMA size */
uint64_t        dma_attr_maxxfer;       /* max DMA xfer size */
uint64_t        dma_attr_seg;           /* segment boundary */
int             dma_attr_sgllen;        /* s/g length */
uint32_t        dma_attr_granular;      /* granularity of device */
uint_t          dma_attr_flags;         /* Bus specific DMA flags */

Drivers that set the DDI_DMA_FLAGERR flag should use the techniques described in Defensive Programming Techniques for illumos Device Drivers and should use ddi_fm_dma_err_get(9F) to check for data path errors whenever DMA transactions are completed or at significant points within the code path. This ensures consistent data and proper error status presented to the I/O software stack.

Getting Error Status

If a fault has occurred that affects the resource mapped by the handle, the error status structure is updated to reflect error information captured during error handling by a bus or other device driver in the I/O data path.

void ddi_fm_dma_err_get(ddi_dma_handle_t handle, ddi_fm_error_t *de, int version)

void ddi_fm_acc_err_get(ddi_acc_handle_t handle, ddi_fm_error_t *de, int version)

The ddi_fm_acc_err_get(9F) and ddi_fm_dma_err_get(9F) functions return the error status for a DMA or access handle respectively. The version field should be set to DDI_FME_VERSION.

An error for an access handle means that an error has been detected that has affected PIO transactions to or from the device using that access handle. Any data received by the driver, for example via a recent ddi_get8(9F) call, should be considered potentially corrupt. Any data sent to the device, for example via a recent ddi_put32(9F) call might also have been corrupted or might not have been received at all. The underlying fault might, however, be transient, and the driver can therefore attempt to recover by calling ddi_fm_acc_err_clear(9F), resetting the device to get it back into a known state, and retrying any potentially failed transactions.

If an error is indicated for a DMA handle, it implies that an error has been detected that has (or will) affect DMA transactions between the device and the memory currently bound to the handle (or most recently bound, if the handle is currently unbound). Possible causes include the failure of a component in the DMA data path, or an attempt by the device to make an invalid DMA access. The driver might be able to continue by retrying and reallocating memory. The contents of the memory currently (or previously) bound to the handle should be regarded as indeterminate and should be released back to the system. The fault indication associated with the current transaction is lost once the handle is bound or re-bound, but because the fault might persist, future DMA operations might not succeed.

Clearing Errors

These routines should be called when the driver wants to retry a request after an error was detected by the handle without needing to free and reallocate the handle first.

void ddi_fm_acc_err_clear(ddi_acc_handle_t handle, int version)

void ddi_fm_dma_err_clear(ddi_dma_handle_t handle, int version)

Registering an Error Handler

Error handling activity might begin at the time that the error is detected by the operating system via a trap or error interrupt. If the software responsible for handling the error (the error handler) cannot immediately isolate the device that was involved in the failed I/O operation, it must attempt to find a software module within the device tree that can perform the error isolation. The illumos device tree provides a structural means to propagate nexus driver error handling activities to children who might have a more detailed understanding of the error and can capture error state and isolate the problem device.

A driver can register an error handler callback with the I/O Fault Services Framework. The error handler should be specific to the type of error and subsystem where error detection has occurred. When the driver's error handler routine is invoked, the driver must check for any outstanding errors associated with device transactions and generate ereport events. The driver must also return error handler status in its ddi_fm_error structure. For example, if it has been determined that the system's integrity has been compromised, the most appropriate action might be for the error handler to panic the system.

The callback is invoked by a parent nexus driver when an error might be associated with a particular device instance. Device drivers that register error handlers must be DDI_FM_ERRCB_CAPABLE.

void ddi_fm_handler_register(dev_info_t *dip, ddi_err_func_t handler, void *impl_data)

The ddi_fm_handler_register(9F) routine registers an error handler callback with the I/O fault services framework. The ddi_fm_handler_register function should be called in the driver's attach(9E) entry point for callback registration following driver fault management initialization (ddi_fm_init).

These actions can be carried out within the error handler function. However, because of the restrictions on locking and because the error handler function does not always know the context of what the driver was doing at the point where the fault occurred, it is more usual for these actions to be carried out following inline calls to ddi_fm_acc_err_get(9F) and ddi_fm_dma_err_get(9F) within the normal paths of the driver as described previously.

 * The I/O fault service error handling callback function
static int
bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
      * as the driver can always deal with an error 
      * in any dma or access handle, we can just return 
      * the fme_status value.
     pci_ereport_post(dip, err, NULL);
     return (err->fme_status);

Fault Management Data and Status Structure

Driver error handling callbacks are passed a pointer to a data structure that contains common fault management data and status for error handling.

The data structure ddi_fm_error contains an FMA protocol ENA for the current error, the status of the error handler callback, an error expectation flag, and any potential access or DMA handles associated with an error detected by the parent nexus.


This field is initialized by the calling parent nexus and might have been incremented along the error handling propagation chain before reaching the driver's registered callback routine. If the driver detects a related error of its own, it should increment this ENA prior to calling ddi_fm_ereport_post.

fme_acc_handle, fme_dma_handle

These fields contain a valid access or DMA handle if the parent was able to associate an error detected at its level to a handle mapped or bound by the device driver.


The fme_flag is set to DDI_FM_ERR_EXPECTED if the calling parent determines the error was the result of a DDI_CAUTIOUS_ACC protected operation. In this case, the fme_acc_handle is valid and the driver should check for and report only errors not associated with the DDI_CAUTIOUS_ACC protected operation. Otherwise, fme_flag is set to DDI_FM_ERR_UNEXPECTED and the driver must perform the full range of error handling tasks.


Upon return from its error handler callback, the driver must set fme_status to one of the following values:

  • DDI_FM_OK – No errors were detected and the operational state of this device instance remains the same.

  • DDI_FM_FATAL – An error has occurred and the driver considers it to be fatal to the system. For example, a call to pci_ereport_post(9F) might have detected a system fatal error. In this case, the driver should report any additional error information it might have in the context of the driver.

  • DDI_FM_NONFATAL – An error has been detected by the driver but is not considered fatal to the system. The driver has identified the error and has either isolated the error or is committing that it will isolate the error.

  • DDI_FM_UNKNOWN – An error has been detected, but the driver is unable to isolate the device or determine the impact of the error on the operational state of the system.

13.1.4. Diagnosing Faults

The fault management daemon, fmd(1M), provides a programming interface for the development of diagnosis engine (DE) plug-in modules. A DE can be written to consume and diagnose any error telemetry or specific error telemetries. The eft DE was designed to diagnose any number of ereport classes based on diagnosis rules specified in the Eversholt language.

Standard Leaf Device Diagnosis

Most I/O subsystems use the eft DE and rules sets to diagnose device and device driver related problems. A standard set of ereports, listed in Reporting Standard I/O Controller Errors, has been specified for PCI leaf devices. Accompanying these ereports are eft diagnosis rules that take the telemetry and identify the associated device fault. Drivers that generate these ereports do not need to deliver any additional diagnosis software or eft rules.

The detection and generation of these ereports produces the following fault events:


A hardware fault on the PCI bus


A hardware fault within the device


A hardware fault in the device or a defect in the driver that causes the device to send an invalid request


A hardware fault in the device that causes the driver not to respond to a valid request


A hardware fault on the link


The link going down so that a device cannot respond to a valid request


A hardware fault within the device


A hardware fault in the device or a defect in the driver that causes the device to send an invalid request


A hardware fault in the device causing it not to respond to a valid request

Specialized Device Diagnosis

Driver developers who want to generate additional ereports or provide more specialized diagnosis software or eft rules can do so by writing a C-based DE or an eft diagnosis rules set. See the Fault Management community on OpenSolaris for information.

13.1.5. Event Registry

The illumos event registry is the central repository of all class names, ereports, faults, defects, upsets and suspect lists (list.suspect) events. The event registry also contains the current definitions of all event member payloads, as well as important non-payload information like internal documentation, suspect lists, dictionaries, and knowledge articles. For example, ereport.io and fault.io are two of the base class names that are of particular importance to I/O driver developers.

The FMA event protocol defines a base set of payload members that is supplied with each of the registered events. Developers can also define additional events that help diagnosis engines (or eft rules) to narrow a suspect list down to a specific fault.

13.1.6. Glossary

This section uses the following terms:


A generic term used to describe fault manager modules that subscribe to fault.* or list.* events. Agents are used to retire faulty resources, communicate diagnosis results to Administrators, and bridge to higher-level management frameworks.

ASRU (Automated System Reconfiguration Unit)

The ASRU is a resource that can be disabled by software or hardware in order to isolate a problem in the system and suppress further error reports.

DE (Diagnosis Engine)

A fault management module whose purpose is to diagnose problems by subscribing to one or more classes of incoming error events and using these events to solve cases associated with each problem on the system.

ENA (Error Numeric Association)

An Error Numeric Association (ENA) is an encoded integer that uniquely identifies an error report within a given fault region and time period. The ENA also indicates the relationship of the error to previous errors as a secondary effect.


An unexpected condition, result, signal, or datum. An error is the symptom of a problem on the system. Each problem typically produces many different kinds of errors.

ereport (Error Report)

The data captured with a particular error. Error report formats are defined in advance by creating a class naming the error report and defining a schema using the illumos event registry.

ereport event (Error Event)

The data structure that represents an instance of an error report. Error events are represented as name-value pair lists.


Malfunctioning behavior of a hardware component.

Fault Boundary

Logical partition of hardware or software elements for which a specific set of faults can be enumerated.

Fault Event

An instance of a fault diagnosis encoded in the protocol.

Fault Manager

Software component responsible for fault diagnosis via one or more diagnosis engines and state management.

FMRI (Fault Managed Resource Identifier)

An FMRI is a URL-like identifier that acts as the canonical name for a particular resource in the fault management system. Each FMRI includes a scheme that identifies the type of resource, and one or more values that are specific to the scheme. An FMRI can be represented as URL-like string or as a name-value pair list data structure.

FRU (Field Replaceable Unit)

The FRU is a resource that can be replaced in the field by a customer or service provider. FRUs can be defined for hardware (for example system boards) or for software (for example software packages or patches).

13.1.7. Resources

13.2. Defensive Programming Techniques for illumos Device Drivers

This section offers techniques for device drivers to avoid system panics and hangs, wasting system resources, and spreading data corruption. A driver is considered hardened when it uses these defensive programming practices in addition to the I/O fault services framework for error handling and diagnosis.

13.2.1. Using Separate Device Driver Instances

The illumos kernel allows multiple instances of a driver. Each instance has its own data space but shares the text and some global data with other instances. The device is managed on a per-instance basis. Drivers should use a separate instance for each piece of hardware unless the driver is designed to handle any failover internally. Multiple instances of a driver per slot can occur, for example, with multifunction cards.

13.2.2. Exclusive Use of DDI Access Handles

All PIO access by a driver must use illumos DDI access functions from the following families of routines:

The driver should not directly access the mapped registers by the address that is returned from ddi_regs_map_setup(9F). Avoid the ddi_peek(9F) and ddi_poke(9F) routines because these routines do not use access handles.

The DDI access mechanism is important because DDI access provides an opportunity to control how data is read into the kernel.

13.2.3. Detecting Corrupted Data

The following sections describe where data corruption can occur and how to detect corruption.

Corruption of Device Management and Control Data

The driver should assume that any data obtained from the device, whether by PIO or DMA, could have been corrupted. In particular, extreme care should be taken with pointers, memory offsets, and array indexes that are based on data from the device. Such values can be malignant, in that these values can cause a kernel panic if dereferenced. All such values should be checked for range and alignment (if required) before use.

Even a pointer that is not malignant can still be misleading. For example, a pointer can point to a valid but not correct instance of an object. Where possible, the driver should cross-check the pointer with the object to which it is pointing, or otherwise validate the data obtained through that pointer.

Other types of data can also be misleading, such as packet lengths, status words, or channel IDs. These data types should be checked to the extent possible. A packet length can be range-checked to ensure that the length is neither negative nor larger than the containing buffer. A status word can be checked for “impossible” bits. A channel ID can be matched against a list of valid IDs.

Where a value is used to identify a stream, the driver must ensure that the stream still exists. The asynchronous nature of processing STREAMS means that a stream can be dismantled while device interrupts are still outstanding.

The driver should not reread data from the device. The data should be read once, validated, and stored in the driver's local state. This technique avoids the hazard of data that is correct when initially read, but is incorrect when reread later.

The driver should also ensure that all loops are bounded. For example, a device that returns a continuous BUSY status should not be able to lock up the entire system.

Corruption of Received Data

Device errors can result in corrupted data being placed in receive buffers. Such corruption is indistinguishable from corruption that occurs beyond the domain of the device, for example, within a network. Typically, existing software is already in place to handle such corruption. One example is the integrity checks at the transport layer of a protocol stack. Another example is integrity checks within the application that uses the device.

If the received data is not to be checked for integrity at a higher layer, the data can be integrity-checked within the driver itself. Methods of detecting corruption in received data are typically device-specific. Checksums and CRC are examples of the kinds of checks that can be done.

13.2.4. DMA Isolation

A defective device might initiate an improper DMA transfer over the bus. This data transfer could corrupt good data that was previously delivered. A device that fails might generate a corrupt address that can contaminate memory that does not even belong to its own driver.

In systems with an IOMMU, a device can write only to pages mapped as writable for DMA. Therefore, such pages should be owned solely by one driver instance. These pages should not be shared with any other kernel structure. While the page in question is mapped as writable for DMA, the driver should be suspicious of data in that page. The page must be unmapped from the IOMMU before the page is passed beyond the driver, and before any validation of the data.

You can use ddi_umem_alloc(9F) to guarantee that a whole aligned page is allocated, or allocate multiple pages and ignore the memory below the first page boundary. You can find the size of an IOMMU page by using ddi_ptob(9F).

Alternatively, the driver can choose to copy the data into a safe part of memory before processing it. If this is done, the data must first be synchronized using ddi_dma_sync(9F).

Calls to ddi_dma_sync should specify SYNC_FOR_DEV before using DMA to transfer data to a device, and SYNC_FOR_CPU after using DMA to transfer data from the device to memory.

On some PCI-based systems with an IOMMU, devices can use PCI dual address cycles (64-bit addresses) to bypass the IOMMU. This capability gives the device the potential to corrupt any region of main memory. Device drivers must not attempt to use such a mode and should disable it.

13.2.5. Handling Stuck Interrupts

The driver must identify stuck interrupts because a persistently asserted interrupt severely affects system performance, almost certainly stalling a single-processor machine.

Sometimes the driver might have difficulty identifying a particular interrupt as invalid. For network drivers, if a receive interrupt is indicated but no new buffers have been made available, no work was needed. When this situation is an isolated occurrence, it is not a problem, since the actual work might already have been completed by another routine such as a read service.

On the other hand, continuous interrupts with no work for the driver to process can indicate a stuck interrupt line. For this reason, platforms allow a number of apparently invalid interrupts to occur before taking defensive action.

While appearing to have work to do, a hung device might be failing to update its buffer descriptors. The driver should defend against such repetitive requests.

In some cases, platform-specific bus drivers might be capable of identifying a persistently unclaimed interrupt and can disable the offending device. However, this relies on the driver's ability to identify the valid interrupts and return the appropriate value. The driver should return a DDI_INTR_UNCLAIMED result unless the driver detects that the device legitimately asserted an interrupt. The interrupt is legitimate only if the device actually requires the driver to do some useful work.

The legitimacy of other, more incidental, interrupts is much harder to certify. An interrupt-expected flag is a useful tool for evaluating whether an interrupt is valid. Consider an interrupt such as descriptor free, which can be generated if all the device's descriptors had been previously allocated. If the driver detects that it has taken the last descriptor from the card, it can set an interrupt-expected flag. If this flag is not set when the associated interrupt is delivered, the interrupt is suspicious.

Some informative interrupts might not be predictable, such as one that indicates that a medium has become disconnected or frame sync has been lost. The easiest method of detecting whether such an interrupt is stuck is to mask this particular source on first occurrence until the next polling cycle.

If the interrupt occurs again while disabled, the interrupt should be considered false. Some devices have interrupt status bits that can be read even if the mask register has disabled the associated source and might not be causing the interrupt. You can devise a more appropriate algorithm specific to your devices.

Avoid looping on interrupt status bits indefinitely. Break such loops if none of the status bits set at the start of a pass requires any real work.

13.2.6. Additional Programming Considerations

Thread Interaction

Kernel panics in a device driver are often caused by unexpected interaction of kernel threads after a device failure. When a device fails, threads can interact in ways that you did not anticipate.

If processing routines terminate early, the condition variable waiters are blocked because an expected signal is never given. Attempting to inform other modules of the failure or handling unanticipated callbacks can result in undesirable thread interactions. Consider the sequence of mutex acquisition and relinquishing that can occur during device failures.

Threads that originate in an upstream STREAMS module can become involved in unfortunate paradoxes if those threads are used to return to that module unexpectedly. Consider using alternative threads to handle exception messages. For instance, a procedure might use a read-side service routine to communicate an M_ERROR, rather than handling the error directly with a read-side putnext(9F).

A failing STREAMS device that cannot be quiesced during close because of a fault can generate an interrupt after the stream has been dismantled. The interrupt handler must not attempt to use a stale stream pointer to try to process the message.

Threats From Top-Down Requests

While protecting the system from defective hardware, you also need to protect against driver misuse. Although the driver can assume that the kernel infrastructure is always correct (a trusted core), user requests passed to it can be potentially destructive.

For example, a user can request an action to be performed upon a user-supplied data block (M_IOCTL) that is smaller than the block size that is indicated in the control part of the message. The driver should never trust a user application.

Consider the construction of each type of ioctl that your driver can receive and the potential harm that the ioctl could cause. The driver should perform checks to ensure that it does not process a malformed ioctl.

Adaptive Strategies

A driver can continue to provide service using faulty hardware. The driver can attempt to work around the identified problem by using an alternative strategy for accessing the device. Given that broken hardware is unpredictable and given the risk associated with additional design complexity, adaptive strategies are not always wise. At most, these strategies should be limited to periodic interrupt polling and retry attempts. Periodically retrying the device tells the driver when a device has recovered. Periodic polling can control the interrupt mechanism after a driver has been forced to disable interrupts.

Ideally, a system always has an alternative device to provide a vital system service. Service multiplexors in kernel or user space offer the best method of maintaining system services when a device fails. Such practices are beyond the scope of this section.

13.3. Driver Hardening Test Harness

The driver hardening test harness tests that the I/O fault services and defensive programming requirements have been correctly fulfilled. Hardened device drivers are resilient to potential hardware faults. You must test the resilience of device drivers as part of the driver development process. This type of testing requires that the driver handle a wide range of typical hardware faults in a controlled and repeatable way. The driver hardening test harness enables you to simulate such hardware faults in software.

The driver hardening test harness is an illumos device driver development tool. The test harness injects a wide range of simulated hardware faults when the driver under development accesses its hardware. This section describes how to configure the test harness, create error-injection specifications (referred to as errdefs), and execute the tests on your device driver.

The test harness intercepts calls from the driver to various DDI routines, then corrupts the result of the calls as if the hardware had caused the corruption. In addition, the harness allows for corruption of accesses to specific registers as well as definition of more random types of corruption.

The test harness can generate test scripts automatically by tracing all register accesses as well as direct memory access (DMA) and interrupt usage during the running of a specified workload. A script is generated that reruns that workload while injecting a set of faults into each access.

The driver tester should remove duplicate test cases from the generated scripts.

The test harness is implemented as a device driver called bofi, which stands for bus_ops fault injection, and two user-level utilities, th_define(1M) and th_manage(1M).

13.3.1. Fault Injection

The driver hardening test harness intercepts and, when requested, corrupts each access a driver makes to its hardware. This section provides information you should understand to create faults to test the resilience of your driver.

illumos devices are managed inside a tree-like structure called the device tree (devinfo tree). Each node of the devinfo tree stores information that relates to a particular instance of a device in the system. Each leaf node corresponds to a device driver, while all other nodes are called nexus nodes. Typically, a nexus represents a bus. A bus node isolates leaf drivers from bus dependencies, which enables architecturally independent drivers to be produced.

Many of the DDI functions, particularly the data access functions, result in upcalls to the bus nexus drivers. When a leaf driver accesses its hardware, it passes a handle to an access routine. The bus nexus understands how to manipulate the handle and fulfill the request. A DDI-compliant driver only accesses hardware through use of these DDI access routines. The test harness intercepts these upcalls before they reach the specified bus nexus. If the data access matches the criteria specified by the driver tester, the access is corrupted. If the data access does not match the criteria, it is given to the bus nexus to handle in the usual way.

A driver obtains an access handle by using the ddi_regs_map_setup(9F) function:

ddi_regs_map_setup(dip, rset, ma, offset, size, handle)

The arguments specify which “offboard” memory is to be mapped. The driver must use the returned handle when it references the mapped I/O addresses, since handles are meant to isolate drivers from the details of bus hierarchies. Therefore, do not directly use the returned mapped address, ma. Direct use of the mapped address destroys the current and future uses of the data access function mechanism.

X and repcnt are the number of bytes to be transferred. X is the bus transfer size of 8, 16, 32, or 64 bytes.

DMA has a similar, yet richer, set of data access functions.

13.3.2. Setting Up the Test Harness

The driver hardening test harness is part of the Solaris Developer Cluster. If you have not installed this Solaris cluster, you must manually install the test harness packages appropriate for your platform.

Installing the Test Harness

To install the test harness packages (SUNWftduu and SUNWftdur), use the pkgadd(1M) command.

As superuser, go to the directory in which the packages are located and type:

# pkgadd -d . SUNWftduu SUNWftdur

Configuring the Test Harness

After the test harness is installed, set the properties in the /kernel/drv/bofi.conf file to configure the harness to interact with your driver. When the harness configuration is complete, reboot the system to load the harness driver.

The test harness behavior is controlled by boot-time properties that are set in the /kernel/drv/bofi.conf configuration file.

When the harness is first installed, enable the harness to intercept the DDI accesses to your driver by setting these properties:


Bus nexus type, such as the PCI bus


Name of the driver under test

For example, to test a PCI bus network driver called xyznetdrv, set the following property values:


Other properties relate to the use and harness checking of the illumos DDI data access mechanisms for reading and writing from peripherals that use PIO and transferring data to and from peripherals that use DMA.


When this property is set, the test harness checks the consistency of the arguments that are passed to PIO data access functions.


When this property is set, the test harness verifies that the mapped address that is returned by ddi_map_regs_setup(9F) is not used outside of the context of the data access functions.


When this property is set, the test harness verifies correct usage of DMA functions and ensures that the driver makes compliant use of ddi_dma_sync(9F).

13.3.3. Testing the Driver

This section describes how to create and inject faults by using the th_define(1M) and th_manage(1M) commands.

Creating Faults

The th_define utility provides an interface to the bofi device driver for defining errdefs. An errdef corresponds to a specification for how to corrupt a device driver's accesses to its hardware. The th_define command-line arguments determine the precise nature of the fault to be injected. If the supplied arguments define a consistent errdef, the th_define process stores the errdef with the bofi driver. The process suspends itself until the criteria given by the errdef becomes satisfied. In practice, the suspension ends when the access counts go to zero (0).

Injecting Faults

Use the -a acc_chk option to simulate framework faults in an errdef.

Fault-Injection Process

  1. Use the th_define(1M) command to create errdefs.

    Create errdefs by passing test definitions to the bofi driver, which stores the definitions so they can be accessed by using the th_manage(1M) command.

  2. Create a workload, then use the th_manage command to activate and manage the errdef.

    The th_manage command is a user interface to the various ioctls that are recognized by the bofi harness driver. The th_manage command operates at the level of driver names and instances and includes these commands: get_handles to list access handles, start to activate errdefs, and stop to deactivate errdefs.

    The activation of an errdef results in qualifying data accesses to be faulted. The th_manage utility supports these commands: broadcast to provide the current state of the errdef and clear_errors to clear the errdef.

    See the th_define(1M) and th_manage(1M) man pages for more information.

Test Harness Warnings

Use the second method to help pinpoint the root cause of a problem.

When the bofi-range-check property value is set to warn, the harness prints the following messages (or panics if set to panic) when it detects a range violation of a DDI function by your driver:

ddi_getX() out of range addr %x not in %x
ddi_putX() out of range addr %x not in %x
ddi_rep_getX() out of range addr %x not in %x
ddi_rep_putX() out of range addr %x not in %x

X is 8, 16, 32, or 64.

When the harness has been requested to insert over 1000 extra interrupts, the following message is printed if the driver does not detect interrupt jabber:

undetected interrupt jabber - %s %d

13.3.4. Using Scripts to Automate the Test Process

You can create fault-injection test scripts by using the logging access type of the th_define(1M) utility:

# th_define -n name -i instance -a log [-e fixup_script]

The th_define command takes the instance offline and brings it back online. Then th_define runs the workload that is described by the fixup_script and logs I/O accesses that are made by the driver instance.

The fixup_script is called twice with the set of optional arguments. The script is called once just before the instance is taken offline, and it is called again after the instance has been brought online.

The following variables are passed into the environment of the called executable:


Device path of the instance


Instance number of the driver


Set to 1 when the instance is about to be taken offline


Set to 1 when the instance has just been brought online

Typically, the fixup_script ensures that the device under test is in a suitable state to be taken offline (unconfigured) or in a suitable state for error injection (for example, configured, error free, and servicing a workload). The following script is a minimal script for a network driver:

if [[ $DRIVER_CONFIGURE = 1 ]]; then
   ifconfig $ifnum plumb	
   ifconfig $ifnum ...	
   ifworkload start $ifnum
elif [[ $DRIVER_UNCONFIGURE = 1 ]]; then	
   ifworkload stop $ifnum	
   ifconfig $ifnum down	
   ifconfig $ifnum unplumb
exit $?

The ifworkload command should initiate the workload as a background task. The fault injection occurs after the fixup_script configures the driver under test and brings it online (DRIVER_CONFIGURE is set to 1).

If the -e fixup_script option is present, it must be the last option on the command line. If the -e option is not present, a default script is used. The default script repeatedly attempts to bring the device under test offline and online. Thus the workload consists of the driver's attach and detach paths.

The resulting log is converted into a set of executable scripts that are suitable for running unassisted fault-injection tests. These scripts are created in a subdirectory of the current directory with the name driver.test.id. The scripts inject faults, one at a time, into the driver while running the workload that is described by the fixup_script.

The driver tester has substantial control over the errdefs that are produced by the test automation process. See the th_define(1M) man page.

If the tester chooses a suitable range of workloads for the test scripts, the harness gives good coverage of the hardening aspects of the driver. However, to achieve full coverage, the tester might need to create additional test cases manually. Add these cases to the test scripts. To ensure that testing completes in a timely manner, you might need to manually delete duplicate test cases.

Automated Test Process

  1. Identify the aspects of the driver to be tested.

    • Attach and detach

    • Plumb and unplumb under a stack

    • Normal data transfer

    • Documented debug modes

    A separate workload script (fixup_script) must be generated for each mode of use.

  2. For each mode of use, prepare an executable program(fixup_script) that configures and unconfigures the device, and creates and terminates a workload.

  3. Run the th_define(1M) command with the errdefs, together with an access type of -a log.

  4. Wait for the logs to fill.

    The logs contain a dump of the bofi driver's internal buffers. This data is included at the front of the script.

    Because it can take from a few seconds to several minutes to create the logs, use the th_manage broadcast command to check the progress.

  5. Change to the created test directory and run the master test script.

    The master script runs each generated test script in sequence. Separate test scripts are generated per register set.

  6. Store the results for analysis.

    Successful test results, such as success (corruption reported) and success (corruption undetected), show that the driver under test is behaving properly. The results are reported as failure (no service impact reported) if the harness detects that the driver has failed to report the service impact after reporting a fault, or if the driver fails to detect that an access or DMA handle has been marked as faulted.

    It is fine for a few test not triggered failures to appear in the output. However, several such failures indicate that the test is not working properly. These failures can appear when the driver does not access the same registers as when the test scripts were generated.

  7. Run the test on multiple instances of the driver concurrently to test the multithreading of error paths.

    For example, each th_define command creates a separate directory that contains test scripts and a master script:

    # th_define -n xyznetdrv -i 0 -a log -e script
    # th_define -n xyznetdrv -i 1 -a log -e script

    Once created, run the master scripts in parallel.

    The generated scripts produce only simulated fault injections that are based on what was logged during the time the logging errdef was active. When you define a workload, ensure that the required results are logged. Also analyze the resulting logs and fault-injection specifications. Verify that the hardware access coverage that the resulting test scripts created is what is required.